Hyperinvariant subspaces for trace class perturbations of normal operators and decomposability

dc.contributor.authorGallardo Gutiérrez, Eva Antonia
dc.contributor.authorGonzález-Doña, F. Javier
dc.date.accessioned2025-05-08T17:08:48Z
dc.date.available2025-05-08T17:08:48Z
dc.date.issued2025
dc.description.abstractWe prove that a large class of trace-class perturbations of diagonalizable normal operators on a separable, infinite dimensional complex Hilbert space have non-trivial closed hyperinvariant subspaces. Moreover, a large subclass consists of decomposable operators in the sense of Colojoara and Foias.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.statuspub
dc.identifier.citationGallardo-Gutiérrez, Eva A.; González-Doña, F. Javier Hyperinvariant subspaces for trace class perturbations of normal operators and decomposability. J. Funct. Anal. 289 (2025), no. 2, Paper No. 110903, 37 pp.
dc.identifier.doi10.1016/j.jfa.2025.110903
dc.identifier.officialurlhttps://doi.org/10.1016/j.jfa.2025.110903
dc.identifier.urihttps://hdl.handle.net/20.500.14352/119944
dc.issue.number2
dc.journal.titleJournal of Functional Analysis
dc.language.isoeng
dc.page.initial110903 (37)
dc.publisherElsevier
dc.relation.projectIDPID2022-137294NB-I00
dc.relation.projectIDCEX2019-000904-S
dc.relation.projectIDCEX2023-001347-S
dc.relation.projectID20205CEX001
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordCompact perturbations of normal operators
dc.subject.keywordInvariant subspaces
dc.subject.keywordSpectral subspaces
dc.subject.keywordDecomposable operators
dc.subject.ucmAnálisis matemático
dc.subject.unesco12 Matemáticas
dc.titleHyperinvariant subspaces for trace class perturbations of normal operators and decomposability
dc.typejournal article
dc.volume.number289
dspace.entity.typePublication
relation.isAuthorOfPublicationf56f1f11-4b62-4a87-80df-8dc195da1201
relation.isAuthorOfPublication.latestForDiscoveryf56f1f11-4b62-4a87-80df-8dc195da1201

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hyperinvariant_subspaces.pdf
Size:
495.36 KB
Format:
Adobe Portable Document Format

Collections