Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Noise spectral analysis and error estimation of continuous glucose monitors under real-life conditions of diabetes patients

dc.contributor.authorGarnica Alcázar, Antonio Óscar
dc.contributor.authorLanchares Dávila, Juan
dc.contributor.authorVelasco Cabo, José Manuel
dc.contributor.authorHidalgo Pérez, José Ignacio
dc.contributor.authorBotella Serrano, Marta
dc.date.accessioned2025-01-30T17:25:37Z
dc.date.available2025-01-30T17:25:37Z
dc.date.issued2020-08
dc.description.abstractWe present an analysis of the nature of noise and measurement errors for two popular continuous glucose monitors (Medtronic OneTouch UltraSmart and Abbott FreeStyle Libre) under daily, real-life conditions. We use three different techniques to extract the noise in the time series of the interstitial glucose values provided by these sensors: local regression, singular spectrum analysis, and wavelets. Likewise, we characterize the noise using five different methods: power spectral density, normality tests for noise values, the generalized Hurst exponent, Bayesian information criterion, and the fit of the noise to an autoregressive model. To analyze measurement errors, we use five different metrics: the instantaneous error, the minimum error in a 60-min timeframe, the lag of the minimum error in the 60-min timeframe, and both the average and the standard deviation of the absolute value of the instantaneous error. We perform the analysis on data provided by 20 patients totaling 198162 samples that account for more than 1732 days of data measured by patients during their daily lives. The results conclude that continuous glucose monitors have either pink or red noise; the fit of autoregressive models to the noise is lower than previously reported, and the elective model, if any, has a high order; the medians of the measurement errors have a strong presence of outliers with values above 80 mg/dl, lags higher than reported in hospital, controlled trials, and considerable intra- and inter-patient variability; and that glucose monitor accuracy is dependent upon the patients’ glycemic variability.eng
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipFundación Eugenio Rodríguez Pascual
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades(España)
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.identifier.citationO. Garnica, J. Lanchares, J. M. Velasco, J. I. Hidalgo, y M. Botella, «Noise spectral analysis and error estimation of continuous glucose monitors under real-life conditions of diabetes patients», Biomedical Signal Processing and Control, vol. 61, p. 101934, ago. 2020, doi: 10.1016/j.bspc.2020.101934.
dc.identifier.doi10.1016/J.BSPC.2020.101934
dc.identifier.officialurlhttps://doi.org/10.1016/j.bspc.2020.101934
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S1746809420300902?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117422
dc.journal.titleBiomedical Signal Processing and Control
dc.language.isoeng
dc.publisherElsevier
dc.relation.projectIDinfo:eu-repo/grantAgreement/RTI2018-095180-B-I00
dc.relation.projectIDinfo:eu-repo/grantAgreement/B2017/BMD3773
dc.relation.projectIDinfo:eu-repo/grantAgreement/Y2018/NMT-4668
dc.rights.accessRightsrestricted access
dc.subject.cdu004
dc.subject.keywordSpectral analysis
dc.subject.keywordMeasurement errors
dc.subject.keywordPatient monitoring
dc.subject.keywordDiabetes mellitus
dc.subject.ucmInformática (Informática)
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleNoise spectral analysis and error estimation of continuous glucose monitors under real-life conditions of diabetes patients
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number61
dspace.entity.typePublication
relation.isAuthorOfPublication33d1dfc8-7bd7-4f4d-ac77-e9c369e8d82e
relation.isAuthorOfPublication16573486-e80c-4ffd-903b-35cffc604780
relation.isAuthorOfPublicationce8731c7-a3bb-4010-98d9-e9b72622941b
relation.isAuthorOfPublication981f825f-2880-449a-bcfc-686b866206d0
relation.isAuthorOfPublication.latestForDiscovery33d1dfc8-7bd7-4f4d-ac77-e9c369e8d82e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
oscar_1-s.pdf
Size:
1.75 MB
Format:
Adobe Portable Document Format

Collections