Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Propiedad de Artin-Lang para variedades analíticas de dimensión dos

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2002

Defense date

1994

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad Complutense de Madrid, Servicio de Publicaciones
Citations
Google Scholar

Citation

Abstract

el objetivo central de esta tesis ha sido el estudio de los conjuntos semianaliticos globales en una variedad analítica real m no compacta de dimensión 2. Los resultados más importantes son los siguientes: en primer lugar se demuestra que los cuerpos residuales de ideales maximales del anillo de funciones analíticas sobre m son reales y cerrados. En segundo lugar se desarrolla una técnica que consiste en asociar un filtro maximal de semianaliticos globales cerrados a cada orden total sobre un conjunto analítico irreducible. Como primeras aplicaciones se demuestran los teoremas de artin-lang y el problema 17 de hilbert para determinadas familias de funciones meromorfas, y una caracterización geométrica mediante curvas analíticas de las funciones con soporte compacto que son sumas de potencias 2k-esimas de funciones meromorfas. Gracias también a esta técnica y otros resultados se obtiene la propiedad de artin-lang para variedades analíticas reales conexas y paracompactas de dimensión dos. A continuación se demuestran la semianaliticidad global de las componentes conexas y de la adherencia para dimensión 2 y 3, respectivamente. Para terminar un resultado en dimensión dos que muestra que un semianalitico es global si y solo si lo es su frontera

Research Projects

Organizational Units

Journal Issue

Description

Tesis de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, Departamento de Álgebra, leída el 05-09-1994

UCM subjects

Unesco subjects

Keywords

Collections