Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Linear parabolic equations in locally uniform spaces

dc.contributor.authorArrieta Algarra, José María
dc.contributor.authorRodríguez Bernal, Aníbal
dc.contributor.authorCholewa, Jan W.
dc.contributor.authorDlotko, Tomasz
dc.date.accessioned2023-06-20T09:46:21Z
dc.date.available2023-06-20T09:46:21Z
dc.date.issued2004
dc.description.abstractWe analyze the linear theory of parabolic equations in uniform spaces. We obtain sharp L-p - L-q-type estimates in uniform spaces for heat and Schrodinger semigroups and analyze the regularizing effect and the exponential type of these semigroups. We also deal with general second-order elliptic operators and study the generation of analytic semigoups in uniform spaces.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGES (Spain)
dc.description.sponsorshipKBN (Poland)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/18039
dc.identifier.doi10.1142/S0218202504003234
dc.identifier.issn0218-2025
dc.identifier.officialurlhttp://www.worldscientific.com/doi/pdf/10.1142/S0218202504003234
dc.identifier.relatedurlhttp://www.worldscientific.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50334
dc.issue.number2
dc.journal.titleMathematical Models and Methods in Applied Sciences
dc.language.isoeng
dc.page.final293
dc.page.initial253
dc.publisherWorld Scientific
dc.relation.projectIDBFM2000-0798
dc.relation.projectIDP03A 035 18
dc.rights.accessRightsrestricted access
dc.subject.cdu517.986
dc.subject.keywordUniform spaces
dc.subject.keywordHeat equation
dc.subject.keywordSchrodinger semigroup
dc.subject.keywordAnalytic semigroups
dc.subject.keywordLp - L-q estimates
dc.subject.keywordRegularizing effect
dc.subject.keywordExponential type
dc.subject.keywordGinzburg-landau equation
dc.subject.keywordUnbounded-domains
dc.subject.keywordDiffusion equations
dc.subject.keywordEvolution-equations
dc.subject.keywordBoundary-conditions
dc.subject.keywordGlobal attractor
dc.subject.keywordCauchy-problem
dc.subject.keywordExistence
dc.subject.keywordSemigroups
dc.subject.keywordBehavior
dc.subject.ucmFunciones (Matemáticas)
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleLinear parabolic equations in locally uniform spaces
dc.typejournal article
dc.volume.number14
dcterms.referencesF. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains, J. Diff. Equation 83 (1990) 85–108. R. A. Adams, Sobolev Spaces (Academic Press, 1975). H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function Spaces, Differential Operators and Nonlinear Analysis (Teubner, 1993) pp. 9–126. H. Amann, Linear and Quasilinear Parabolic Problems (Birkhäuser, 1995). H. Amann, M. Hieber and G. Simonett, Bounded H ∞ -calculus for elliptic operators, Diff. Int. Eqns. 3 (1994) 613–653. H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems. J. Diff. Eqns. 146 (1998) 336–374. W. Arendt and C. J. K. Batty, Exponential stability of a diffusion equation with absorption, Diff. Int. Eqns. 6 (1993) 1009–1024. W. Arendt and C. J. K. Batty, Absorption semigroups and Dirichlet boundary conditions, Math. Ann. 295 (1993) 427–448. J. M. Arrieta, J. W. Cholewa, T. Dlotko and A. Rodriguez-Bernal, Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains, Nonlinear Anal. 56 (2004) 515–554. A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations in unbounded domain, Proc. Roy. Soc. Edinburgh A116 (1990) 221–243. A. V. Babin and M. I. Vishik, Attractors of Evolution Equations (North-Holland, 1991). J. Bergh and J. Löfström, Interpolation Spaces. An Introduction (Springer, 1976). J. W. Cholewa and T. Dlotko, Cauchy problems in weighted Lebesgue spaces, to appear in Czech. J. Math. cf. D. Daners, Heat kernel estimates for operators with boundary conditions, Math. Nachr. 217 (2000) 13–41. G. Duro and E. Zuazua, Large time behavior for convection-diffusion equations in R N with asymptotically constant diffusion, Comm. PDE 24 (1999) 1283–1340. D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers, Differential Operators (Cambridge Univ. Press, 1996). M. A. Efendiev and S. V. Zelik, The attractor for a nonlinear reaction-diffusion system in an unbounded domain, Comm. Pure Appl. Math. 54 (2001) 625–688. M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the heat equation, Nonlinear Anal. 11 (1987) 1103–1133. E. Feireisl, Bounded, locally compact global attractors for semilinear damped wave equations on R N , Diff. Int. Eqns. 9 (1996) 1147–1156. E. Feireisl, Ph. Laurencot and F. Simondon, Global attractors for degenerate parabolic equations on unbounded domains, J. Diff. Eqns. 129 (1996) 239–261. A. Friedman, Partial Differential Equations of Parabolic Type (Prentice Hall, 1964). D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second-Order (Springer, 1998). J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg–Landau equation I. Compactness methods, Physica D95 (1996) 191–228. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol. 840 (Springer, 1981). J. J. L. Velazquez, Higher dimensional blow up for semilinear parabolic equations, Comm. Partial Diff. Eqns. 17 (1992) 1567–1686. M. Hieber, P. Koch Medina and S. Merino, Linear and semilinear parabolic equation on BUC(R N ) , Math. Narch. 179 (1996) 107–118. T. Kato, The Cauchy problem for quasi–linear symmetric hyperbolic systems, Arch. Rat. Mech. Anal. 58 (1975) 181–205. A. Lunardi, Analytic Semigroup and Optimal Regularity in Parabolic Problems (Birkhäuser, 1995). MR1329547 (96e:47039) J. Matos and P. Souplet, Instantaneous smoothing estimates for the Hermite semigroup in uniformly local spaces and related nonlinear equations, Preprint. cf. MR2083878 (2005e:35026) S. Merino, On the existence of the compact global attractor for semilinear reaction diffusion systems on R N , J. Diff. Eqns. 132 (1996) 87–106. MR1418501 (97h:35102) A. Mielke, The complex Ginzburg–Landau equation on large and unbounded domains: sharper bounds and attractors, Nonlinearity 10 (1997) 199–222. MR1430749 (97m:35242) A. Mielke and G. Schneider, Attractors for modulation equations on unbounded domains-existence and comparison, Nonlinearity 8 (1995) 743–768. MR1355041 (97e:58207) A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations (Springer, 1983). MR0710486 (85g:47061) B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982) 447–526. MR0670130 (86b:81001a) H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (Veb Deutscher, 1978). MR0503903 (80i:46032b)
dspace.entity.typePublication
relation.isAuthorOfPublication2f8ee04e-dfcb-4000-a2ae-18047c5f0f4a
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublication.latestForDiscovery2f8ee04e-dfcb-4000-a2ae-18047c5f0f4a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RodBernal33.pdf
Size:
462.94 KB
Format:
Adobe Portable Document Format

Collections