Aviso: por motivos de mantenimiento y mejora del repositorio, mañana martes día 13 de mayo, entre las 9 y las 14 horas, Docta Complutense, no funcionará con normalidad. Disculpen las molestias.
 

Robust and Accurate Modeling Approaches for Migraine Per-Patient Prediction from Ambulatory Data

dc.contributor.authorPagán, Josué
dc.contributor.authorDe Orbe, M.
dc.contributor.authorGago, Ana
dc.contributor.authorSobrado, Mónica
dc.contributor.authorRisco Martín, José Luis
dc.contributor.authorVivancos Mora, J.
dc.contributor.authorMoya, José M.
dc.contributor.authorAyala Rodrigo, José Luis
dc.date.accessioned2023-06-18T06:06:19Z
dc.date.available2023-06-18T06:06:19Z
dc.date.issued2015-06-30
dc.description.abstractMigraine is one of the most wide-spread neurological disorders, and its medical treatment represents a high percentage of the costs of health systems. In some patients, characteristic symptoms that precede the headache appear. However, they are nonspecific, and their prediction horizon is unknown and pretty variable; hence, these symptoms are almost useless for prediction, and they are not useful to advance the intake of drugs to be effective and neutralize the pain. To solve this problem, this paper sets up a realistic monitoring scenario where hemodynamic variables from real patients are monitored in ambulatory conditions with a wireless body sensor network (WBSN). The acquired data are used to evaluate the predictive capabilities and robustness against noise and failures in sensors of several modeling approaches. The obtained results encourage the development of per-patient models based on state-space models (N4SID) that are capable of providing average forecast windows of 47 min and a low rate of false positives.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/67808
dc.identifier.doi10.3390/s150715419
dc.identifier.issn1424-8220
dc.identifier.officialurlhttps://doi.org/10.3390/s150715419
dc.identifier.relatedurlhttps://www.mdpi.com/1424-8220/15/7/15419
dc.identifier.urihttps://hdl.handle.net/20.500.14352/23887
dc.issue.number7
dc.journal.titleSensors
dc.language.isoeng
dc.page.final15442
dc.page.initial15419
dc.publisherMDPI
dc.relation.projectIDTEC2012-33892
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordmigraine
dc.subject.keywordWBSN
dc.subject.keywordmodeling
dc.subject.keywordN4SID
dc.subject.keywordprediction
dc.subject.keywordrobustness
dc.subject.ucmInformática (Informática)
dc.subject.ucmInformática médica y telemedicina
dc.subject.unesco1203.17 Informática
dc.titleRobust and Accurate Modeling Approaches for Migraine Per-Patient Prediction from Ambulatory Data
dc.typejournal article
dc.volume.number15
dspace.entity.typePublication
relation.isAuthorOfPublicationb18c2bd8-52be-4d79-bd8b-dbd8e970d703
relation.isAuthorOfPublicationd73a810d-34c3-440e-8b5f-e2a7b0eb538f
relation.isAuthorOfPublication.latestForDiscoveryb18c2bd8-52be-4d79-bd8b-dbd8e970d703

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sensors-15-15419-v2.pdf
Size:
2.15 MB
Format:
Adobe Portable Document Format

Collections