An Inductive Methodology for Data-Based Rules Building
dc.book.title | Algorithmic Decision Theory: First International Conference, ADT 2009, Venice, Italy, October 2009, Proceedings | |
dc.contributor.author | Rodríguez González, Juan Tinguaro | |
dc.contributor.author | Montero De Juan, Francisco Javier | |
dc.contributor.author | Vitoriano Villanueva, Begoña | |
dc.contributor.author | López, Victoria | |
dc.contributor.editor | Rossi, Francesca | |
dc.contributor.editor | Tsoukias, Alexis | |
dc.date.accessioned | 2023-06-20T13:38:26Z | |
dc.date.available | 2023-06-20T13:38:26Z | |
dc.date.issued | 2009 | |
dc.description | Lecture Notes in Artificial Intelligence | |
dc.description.abstract | Extraction of rules from databases for classification and decision tasks is an issue of growing importance as automated processes based on data are being required in these fields. An inductive methodology for data-based rules building and automated learning is presented in this paper. A fuzzy framework is used for knowledge representation and, through the introduction and the use of dual properties in the valuation space of response variables, reasons for and against the rules are evaluated from data. This make possible to use continuous DDT logic, which provides a more general and informative framework, in order to assess the validity of rules and build an appropriate knowledge base. | en |
dc.description.department | Depto. de Estadística e Investigación Operativa | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16858 | |
dc.identifier.citation | Rodríguez, J.T., Montero, J., Vitoriano, B., López, V.: An Inductive Methodology for Data-Based Rules Building. En: Rossi, F. y Tsoukias, A. (eds.) Algorithmic Decision Theory. pp. 424-433. Springer Berlin Heidelberg, Berlin, Heidelberg (2009) | |
dc.identifier.doi | 10.1007/978-3-642-04428-1_37 | |
dc.identifier.isbn | 978-3-642-04427-4 | |
dc.identifier.officialurl | https//doi.org/10.1007/978-3-642-04428-1_37 | |
dc.identifier.relatedurl | http://www.springerlink.com/content/b650283049324378/fulltext.pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/53154 | |
dc.issue.number | 5783 | |
dc.language.iso | eng | |
dc.page.final | 433 | |
dc.page.initial | 424 | |
dc.publication.place | Berlin | |
dc.publisher | Springer-Verlag Berlin Heidelberg | |
dc.relation.ispartofseries | Lecture Notes in Computer Science | |
dc.relation.projectID | TIN200606190 | |
dc.relation.projectID | IC0602 | |
dc.relation.projectID | CCGO7-UCM/ESP-2576 | |
dc.relation.projectID | C3-0132 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 519.83 | |
dc.subject.keyword | Rules induction | |
dc.subject.keyword | DDT logic | |
dc.subject.keyword | Fuzzy inference systems | |
dc.subject.keyword | Dual predicates | |
dc.subject.ucm | Investigación operativa (Matemáticas) | |
dc.subject.unesco | 1207 Investigación Operativa | |
dc.title | An Inductive Methodology for Data-Based Rules Building | en |
dc.type | book part | |
dcterms.references | Amo, A., Montero, J., Biging, G., Cutello, V.: Fuzzy classification systems. European Journal of Operational Research 156(2), 495–507 (2004) Atanassov, K.T.: Intuitionistic Fuzzy Sets. Physica-Verlag, Heidelberg (1999) Destercke, S., Guillaume, S., Charnomordic, B.: Building an interpretable fuzzy rule base from data using Orthogonal Least Squares. Application to a depollution problem. Fuzzy Sets and Systems 158(18), 2078–2094 (2007) Fortemps, P., Slowinski, R.: A graded quadrivalent logic for ordinal preference modelling:Loyola-like approach. Fuzzy Optimization and Decision Making 1(1), 93–111 (2002) Fortemps, P., Greco, S., Slowinski, R.: Multicriteria decision support using rules that represent rough-graded preference relations. European J. Operational Research 188(1),206–223 (2008) Hammer, P.L., Bonates, T.: Logical Analysis of Data - An overview: From Combinatorial Optimization to Medical Applications. Annals of Operations Research 148(1),203–225(2006) Iliadis, L.S.: A decision support system applying an integrated fuzzy model for long-term forest fire risk estimation. Environmental Modelling & Software 20, 613–621 (2005) Mamdani, E.H.: Application of Fuzzy Algorithms for the Control of a Dynamic Plant.Proc. IEE 121(12), 1585–1588 (1974) Montero, J., Gómez, D., Bustince, H.: On the relevance of some families of fuzzy sets.Fuzzy sets and systems 158(22), 2439–2442 (2007) Novak, V.: Antonyms and linguistic quantifiers in fuzzy logic. Fuzzy Sets and Systems 124, 335–351 (2001) Öztürk, M., Tsoukiàs, A.: Modelling uncertain positive and negative reasons in decision aiding. Decision Support Systems 43(4), 1512–1526 (2007) Paradis, C., Willners, C.: Antonymy and negation—the boundness hypothesis. J. Pragmatics 38, 1051–1080 (2006) Rodriguez, J.T., Vitoriano, B., Montero, J., Omaña, A.: A decision support tool for humanitarian organizations in natural disaster relief. In: Ruan, D., et al. (eds.) Computational Intelligence in Decision and Control, pp. 600–605. World Scientific, Singapore (2008) Ruspini, E.H.: A new approach to clustering. Inform.Control 15, 22–32 (1969) Tsoukiàs, A.: A first-order, four valued, weakly paraconsistent logic and its relation to rough sets semantics. Foundations of Computing and Decision Sciences 12, 85–108 (2002) Yager, R.R.: Targeted e-commerce marketing using fuzzy intelligent agents. Intelligent Systems and their Applications 15(6), 42–45 (2000) | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | ddad170a-793c-4bdc-b983-98d313c81b03 | |
relation.isAuthorOfPublication | 9e4cf7df-686c-452d-a98e-7b2602e9e0ea | |
relation.isAuthorOfPublication | efbdfdd4-3d98-4463-813b-73beda8ff1dc | |
relation.isAuthorOfPublication.latestForDiscovery | ddad170a-793c-4bdc-b983-98d313c81b03 |
Download
Original bundle
1 - 1 of 1