Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Quantification of subsurface heat storage in a GCM simulation

dc.contributor.authorMacDougall, Andrew H.
dc.contributor.authorGonzález Rouco, Jesús Fidel
dc.contributor.authorStevens, M. Bruce
dc.contributor.authorBeltrami, Hugo
dc.date.accessioned2023-06-20T11:11:57Z
dc.date.available2023-06-20T11:11:57Z
dc.date.issued2008-07-04
dc.descriptionCopyright 2008 by the American Geophysical Union. This research was funded by grants from NSERC Discovery, AIF (ACOA), CFCAS, and ACEnet (HB); Ramón y Cajal (JFGR); NSERC PGS-D (MBS); and NSERC USRA (AHM).
dc.description.abstractShallow bottom boundary conditions (BBCs) in the soil components of general circulation models (GCMs) impose artificial limits on subsurface heat storage. To assess this problem we estimate the subsurface heat content from two future climate simulations and compare to that obtained from an offline soil model (FDLSM) driven by GCM skin temperatures. FDLSM is then used as an offline substitute for the subsurface of the GCM ECHO-G. With a 600-m BBC and driven by ECHO-G future temperatures, the FDLSM subsurface absorbs 6.2 (7.5) times more heat than the ECHO-G soil model (10 m deep) under the Intergovernmental Panel on Climate Change (IPCC) A2 (B2) emission scenario. This suggests that shallow BBCs in GCM simulations may underestimate the heat stored in the subsurface, particularly for northern high latitudes. This effect could be relevant in assessing the energy balance and climate change in the next century.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada (NSERC)
dc.description.sponsorshipAtlantic Innovation Fund (AIF), Canadá
dc.description.sponsorshipCanadian Foundation for Climate and Atmospheric Sciences (CFCAS)
dc.description.sponsorshipAtlantic Computational Excellence Network (ACEnet), Canadá
dc.description.sponsorshipPrograma Ramón y Cajal (MEC)
dc.description.sponsorshipNSERC PGS-D
dc.description.sponsorshipUndergraduate Student Research Awards (USRA), NSERC
dc.description.sponsorshipAtlantic Canada Opportunities Agency (ACOA)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/36339
dc.identifier.doi10.1029/2008GL034639
dc.identifier.issn0094-8276
dc.identifier.officialurlhttp://dx.doi.org/10.1029/2008GL034639
dc.identifier.relatedurlhttp://onlinelibrary.wiley.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51820
dc.issue.number13
dc.journal.titleGeophysical research letters
dc.language.isoeng
dc.publisherAmerican Geophysical Union
dc.rights.accessRightsopen access
dc.subject.cdu52
dc.subject.keywordClimate
dc.subject.keywordCanada
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.titleQuantification of subsurface heat storage in a GCM simulation
dc.typejournal article
dc.volume.number35
dcterms.referencesAlexeev, V. A., D. J. Nicolsky, V. E. Romanovsky, and D. M. Lawrence (2007), An evaluation of deep soil configurations in the CLM3 for improved representation of permafrost, Geophys. Res. Lett., 34, L09502, doi:10.1029/2007GL029536. Beltrami, H. (2002), Climate from borehole data: Energy fluxes and temperatures since 1500, Geophys. Res. Lett., 29(23), 2111, doi:10.1029/2002GL015702. Beltrami, H., J. E. Smerdon, H. N. Pollack, and S. Huang (2002), Continental heat gain in the global climate system, Geophys. Res. Lett., 29(8), 1167, doi:10.1029/2001GL014310. Beltrami, H., E. Bourlon, L. Kellman, and J. F. González Rouco (2006), Spatial patterns of ground heat gain in the Northern Hemisphere, Geophys. Res. Lett., 33, L06717, doi:10.1029/2006GL025676. Bense, V. F., and H. Kooi (2004), Temporal and spatial variations of shallow subsurface temperature as a record of lateral variations in groundwater flow, J. Geophys. Res., 109, B04103, doi:10.1029/2003JB002782. Cermak, V., and L. Rybach (1982), Thermal conductivity and specific heat of minerals and rocks, in Physikalische Eigenschaften der Gesteine, Landolt-Börnstein Zahlenwerte Funkt. Naturwiss. Tech., vol. 1, edited by G. Angenheister, pp. 305 – 343, Springer, Berlin. Davin, E. L., N. de Noblet-Ducoudré, and P. Friedlingstein (2007), Impact of land cover change on surface climate: Relevance of the radiative forcing concept, Geophys. Res. Lett., 34, L13702, doi:10.1029/2007GL029678. Dirmeyer, P. A. (2000), Using a global soil wetness dataset to improve seasonal climate simulation, J. Clim., 13, 2900 – 2922. Ferguson, G., H. Beltrami, and A. D. Woodbury (2006), Perturbation of ground surface temperature reconstructions by groundwater flow?, Geophys. Res. Lett., 33, L13708, doi:10.1029/2006GL026634. Fischer, E. M., S. I. Seneviratne, D. Lüthi, and C. Schär (2007), Contribution of land-atmosphere coupling to recent European summer heat waves, Geophys. Res. Lett., 34, L06707, doi:10.1029/2006GL029068. Fischer-Bruns, I., H. von Storch, J. F. González Rouco, and E. Zorita (2005), A modelling study on the variability of global storm activity on timescales of decades and centuries, Clim. Dyn., 25, 461 – 476. González Rouco, J. F., H. Beltrami, E. Zorita, and M. B. Stevens (2008), Borehole climatology: A discussion based on contributions from climate modeling, Clim. Past Discuss., 4, 1 – 80. Goodrich, L. E. (1982), The influence of snow cover on the ground thermal regime, Can. Geotech. J., 19, 421 – 432. Hansen, J., et al. (2005), Earth’s energy imbalance: Confirmation and implications, Science, 308, 1431 – 1435. Huang, S. (2006), 1851 – 2004 annual heat budget of the continental landmasses, Geophys. Res. Lett., 33, L04707, doi:10.1029/2005GL025300. Kellman, L., H. Beltrami, and D. Risk (2007), Changes in seasonal soil respiration with pasture conversion to forest in Atlantic Canada, Biogeochemistry, 82, 101 – 109, doi:10.1007/s10 533-006-9056-0. Lawrence, D. M., and A. G. Slater (2005), A projection of severe nearsurface permafrost degradation during the 21st century, Geophys. Res. Lett., 32, L24401, doi:10.1029/2005GL025080. Legutke, S., and R. Voss (1999), The Hamburg Atmosphere-Ocean Coupled Circulation Model ECHO-G, Tech. Rep. 18, Ger. Clim. Comput. Cent., Hamburg, Germany. Levitus, S., J. Antonov, and T. Boyer (2005), Warming of the world ocean, 1955 – 2003, Geophys. Res. Lett., 32, L02604, doi:10.1029/2004GL021592. Miguez Macho, G., G. L. Stenchikov, and A. Robock (2005), Regional climate simulations over North America: Interaction of local processes with improved large-scale flow, J. Clim., 18, 1227 – 1246. Miguez Macho, G., Y. Fan, C. P. Weaver, R. Walko, and A. Robock (2007), Incorporating water table dynamics in climate modeling: 2. Formulation, validation, and soil moisture simulation, J. Geophys. Res., 112, D13108, doi:10.1029/2006JD008112. Risk, D., L. Kellman, and H. Beltrami (2002a), Soil CO2 production and surface flux at four climate observatories in eastern Canada, Global Biogeochem. Cycles, 16(4), 1122, doi:10.1029/2001GB001831. Risk, D., L. Kellman, and H. Beltrami (2002b), Carbon dioxide in soil profiles: Production and temperature dependence, Geophys. Res. Lett., 29(6), 1087, doi:10.1029/2001GL014002. Riveros Iregui, D. A., R. E. Emanuel, D. J. Muth, B. L. McGlynn, H. E. Epstein, D. L. Welsch, V. J. Pacific, and J. M. Wraith (2007), Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content, Geophys. Res. Lett., 34, L17404, doi:10.1029/2007GL030938. Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär (2006), Land-atmosphere coupling and climate change in Europe, Nature, 443, 205 – 209, doi:10.1038/nature05095. Smerdon, J. E., and M. Stieglitz (2006), Simulating heat transport of harmonic temperature signals in the Earth’s shallow subsurface: Lowerboundary sensitivities, Geophys. Res. Lett., 33, L14402, doi:10.1029/2006GL026816. Intergovernmental Panel on Climate Change (IPCC) (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, U. K. Stevens, M. B., J. E. Smerdon, J. F. González Rouco, M. Stieglitz, and H. Beltrami (2007), Effects of bottom boundary placement on subsurface heat storage: Implications for climate model simulations, Geophys. Res. Lett., 34, L02702, doi:10.1029/2006GL028546. Sushama, L., R. Laprise, and M. Allard (2006), Modeled current and future soil thermal regime for northeast Canada, J. Geophys. Res., 111, D18111, doi:10.1029/2005JD007027. Sushama, L., R. Laprise, D. Caya, D. Verseghy, and M. Allard (2007), An RCM projection of soil thermal and moisture regimes for North American permafrost zones, Geophys. Res. Lett., 34, L20711, doi:10.1029/2007GL031385. Zhu, J., and X.-Z. Liang (2005), Regional climate model simulation of U.S. soil temperature and moisture during 1982 – 2002, J. Geophys. Res., 110, D24110, doi:10.1029/2005JD006472. Zorita, E., J. F. González Rouco, H. von Storch, J. P. Montávez, and F. Valero (2005), Natural and anthropogenic modes of surface temperature variations in the last thousand years, Geophys. Res. Lett., 32, L08707, doi:10.1029/2004GL021563.
dspace.entity.typePublication
relation.isAuthorOfPublicationb0dda0f2-5a69-45d6-8aec-ccc99f2dc468
relation.isAuthorOfPublication.latestForDiscoveryb0dda0f2-5a69-45d6-8aec-ccc99f2dc468

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gonzalezrouco30libre.pdf
Size:
325.62 KB
Format:
Adobe Portable Document Format

Collections