Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Measurement of picosecond lifetimes in neutron-rich Xe isotopes

dc.contributor.authorFraile Prieto, Luis Mario
dc.contributor.authorMach, H.
dc.contributor.authorPaziy, V.
dc.date.accessioned2023-06-17T23:54:01Z
dc.date.available2023-06-17T23:54:01Z
dc.date.issued2016-09-03
dc.description©2016 American Physical Society. Artículo firmado por más de 10 autores. This work is supported by NuPNET and the German ministry of education and research (BMBF) under Grants No. 05P12RDCIA, No. 05P12RDNUP, and No. 05P12PKNUF; by ILL; and by HIC for FAIR. Also supported by the UK Science and Technology Facilities Council and the UK National Measurement Office. The authors appreciate the support of several services at ILL and LPSC.
dc.description.abstractBackground: Lifetimes of nuclear excited states in fission fragments have been studied in the past following isotope separation, thus giving access mainly to the fragments' daughters and only to long-lived isomeric states in the primary fragments. For the first time now, short-lived excited states in the primary fragments, produced in neutron-induced prompt fission of U-235 and Pu-241, were studied within the EXILL&FATIMA campaign at the intense neutron-beam facility of the Institute Laue-Langevin in Grenoble. Purpose: We aim to investigate the quadrupole collective properties of neutron-rich even-even Xe-138,Xe-140,Xe-142 isotopes lying between the double shell closure N = 82 and Z = 50 and a deformed region with octupole collectivity. Method: The gamma rays emitted from the excited fragments were detected with a mixed array consisting of 8 HPGe EXOGAM Clover detectors (EXILL) and 16 LaBr3(Ce) fast scintillators (FATIMA). The detector system has the unique ability to select the interesting fragment making use of the high resolution of the HPGe detectors and determine subnanosecond lifetimes using the fast scintillators. For the analysis the generalized centroid difference method was used. Results: We show that quadrupole collectivity increases smoothly with increasing neutron number above the closed N = 82 neutron shell. Our measurements are complemented by state-of-the-art theory calculations based on shell-model descriptions. Conclusions: The observed smooth increase in quadrupole collectivity is similar to the evolution seen in the measured masses of the xenon isotopic chain and is well reproduced by theory. This behavior is in contrast to higher Z even-even nuclei where abrupt change in deformation occurs around N = 90.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipNuPNET
dc.description.sponsorshipGerman ministry of education and research (BMBF)
dc.description.sponsorshipILL
dc.description.sponsorshipHIC for FAIR
dc.description.sponsorshipUK Science and Technology Facilities Council
dc.description.sponsorshipUK National Measurement Office
dc.description.sponsorshipLPSC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/39780
dc.identifier.doi10.1103/PhysRevC.94.034302
dc.identifier.issn2469-9985
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevC.94.034302
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/18991
dc.issue.number3
dc.journal.titlePhysical review C
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectID05P12RDCIA
dc.relation.projectID05P12RDNUP
dc.relation.projectID05P12PKNUF
dc.rights.accessRightsopen access
dc.subject.cdu539.1
dc.subject.keywordFission Fragments
dc.subject.keywordExcited states
dc.subject.keywordNuclei.
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleMeasurement of picosecond lifetimes in neutron-rich Xe isotopes
dc.typejournal article
dc.volume.number94
dcterms.references[1] Th. Kröll et al., AIP Conf. Proc. 1012, 84 (2008). [2] A. Lindroth, B. Fogelberg, H. Mach, M. Sanchez-Vega, and J. Bielčík, Phys. Rev. Lett. 82, 4783 (1999). [3] W. Urban et al., Eur. Phys. J. A 16, 303 (2003). [4] R. Casten, Nuclear Structure from a Simple Perspective (Oxford University Press, Oxford, 1998). [5] W. Nazarewicz and S. L. Tabor, Phys. Rev. C 45, 2226 (1992). [6] P. A. Butler andW. Nazarewicz, Nucl. Phys. A533, 249 (1991). [7] B. Bucher, S. Zhu, C. Y. Wu, R. V. F. Janssens, D. Cline, A. B. Hayes, M. Albers, A. D. Ayangeakaa, P. A. Butler, C. M. Campbell, M. P. Carpenter, C. J. Chiara, J. A. Clark, H. L. Crawford,M. Cromaz, H. M. David, C. Dickerson, E. T. Gregor, J. Harker, C. R. Hoffman, B. P. Kay, F. G. Kondev, A. Korichi, T. Lauritsen, A. O.Macchiavelli, R. C. Pardo, A. Richard, M. A. Riley, G. Savard, M. Scheck, D. Seweryniak, M. K. Smith, R. Vondrasek, and A. Wiens, Phys. Rev. Lett. 116, 112503 (2016). [8] D. Neidherr, R. B. Cakirli, G. Audi, D. Beck, K. Blaum, C. Bohm, M. Breitenfeldt, R. F. Casten, S. George, F. Herfurth, A. Herlert, A. Kellerbauer, M. Kowalska, D. Lunney, E. Minaya-Ramirez, S. Naimi, M. Rosenbusch, S. Schwarz, and L. Schweikhard, Phys. Rev. C 80, 044323 (2009). [9] E. Cheifetz, H. A. Selic, A. Wolf, R. Chechik, and J. B. Wilhelmy, in Proc. Conf. Nucl. Spectr. Fission Products, 1980 (1980) p. 193, http://www.nndc.bnl.gov/nsr/nsrlink.jsp?1980ChZM. [10] I. Ahmad and W. R. Phillips, Rep. Prog. Phys. 58, 1415 (1995). [11] W. Andrejtscheff, M. Senba, N. Tsoupas, and Z. Z. Ding, Nucl. Instr. Methods 204, 123 (1982). [12] A. Dewald, O.M¨oller, and P. Petkov, Prog. Part. Nucl. Phys. 67, 786 (2012). [13] W. Urban et al., J. Instrum. 8, P03014 (2013). [14] J.-M. R´egis, G. S. Simpson et al., Nucl. Instr. Methods A 763, 210 (2014). [15] N. Saed-Samii, Diploma thesis, Universit¨at zu K¨oln, Institut für Kernphysik, 2013. [16] J.-M. Régis et al., Nucl. Instr. Methods A 726, 191 (2013). [17] Z. Bay, Phys. Rev. 77, 419 (1950). [18] J.-M. R´egis et al., Nucl. Instr. Methods A 622, 83 (2010). [19] J.-M. R´egis, N. Saed-Samii et al., Nucl. Instr. Methods A 823, 72 (2016). [20] J.-M. R´egis et al., Nucl. Instr. Methods A 811, 42 (2016). [21] T. R. England and B. F. Rider, Los Alamos National Laboratory report LA-UR-94-3106, ENDF (1994). [22] National nuclear data center, Accessed: August 23, 2016. [23] L. Y. Jia, H. Zhang, and Y. M. Zhao, Phys. Rev. C 75, 034307 (2007). [24] A. Gargano (private communication). [25] N. Shimizu, T. Otsuka, T. Mizusaki, and M. Honma, J. Phys. Conf. Ser. 49, 178 (2006). [26] D. Bianco,N. Lo Iudice, F. Andreozzi,A. Porrino, and F.Knapp, Phys. Rev. C 88, 024303 (2013). [27] B. F. Bayman, A. Covello, A. Gargano, P. Guazzoni, and L. Zetta, Phys. Rev. C 90, 044322 (2014). [28] W. Urban, K. Sieja, T. Rzaca-Urban, M. Czerwinski, H. Naidja, F. Nowacki, A. G. Smith, and I. Ahmad, Phys. Rev. C 93, 034326 (2016). [29] S. Raman, C. W. Nestor Jr., and P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001). [30] D. C. Radford, C. Baktash, J. R. Beene, B. Fuentes, A. Galindo-Uribarri, C. J. Gross, P. A. Hausladen, T. A. Lewis, P. E. Mueller, E. Padilla, D. Shapira, D.W. Stracener, C. H. Yu, C. J. Barton, M. A. Caprio, L. Coraggio, A. Covello, A. Gargano, D. J. Hartley, and N. V. Zamfir, Phys. Rev. Lett. 88, 222501 (2002). [31] C. Goodin, J. R. Stone,N. J. Stone,A.V. Ramayya,A.V. Daniel, J. H. Hamilton, K. Li, J. K. Hwang, G. M. Ter-Akopian, and J. O. Rasmussen, Phys. Rev. C 79, 034316 (2009).
dspace.entity.typePublication
relation.isAuthorOfPublicationec83106c-33f4-426c-afd6-68c5d859f9d4
relation.isAuthorOfPublication.latestForDiscoveryec83106c-33f4-426c-afd6-68c5d859f9d4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PaziyV 02 libre.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format

Collections