Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Completeness properties of locally quasi-convex groups

dc.contributor.authorBruguera Padró, M. Montserrat
dc.contributor.authorChasco, M.J.
dc.contributor.authorMartín Peinador, Elena
dc.contributor.authorTarieladze, Vaja
dc.date.accessioned2023-06-20T16:59:30Z
dc.date.available2023-06-20T16:59:30Z
dc.date.issued2000-04-16
dc.descriptionInternational School of Mathematics G Stampacchia 27th Course: Convergence and Topology.JUN 27-JUL 02, 1998.ERICE, ITALY
dc.description.abstractIt is natural to extend the Grothendieck theorem on completeness, valid for locally convex topological vector spaces, to Abelian topological groups. The adequate framework to do it seems to be the class of locally quasi-convex groups. However, in this paper we present examples of metrizable locally quasi-convex groups for which the analogue to the Grothendieck theorem does not hold. By means of the continuous convergence structure on the dual of a topological group, we also state some weaker forms of the Grothendieck theorem valid for the class of locally quasi-convex groups. Finally, we prove that for the smaller class of nuclear groups, BB-reflexivity is equivalent to completeness. (C) 2001 Elsevier Science B.V.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16660
dc.identifier.doi10.1016/S0166-8641(99)00187-X
dc.identifier.issn0166-8641
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S016686419900187X
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57583
dc.issue.number1-2
dc.journal.titleTopology and its Applications
dc.language.isoeng
dc.page.final93
dc.page.initial81
dc.publisherElsevier Science
dc.rights.accessRightsrestricted access
dc.subject.cdu515.162
dc.subject.keywordcompleteness
dc.subject.keywordGrothendieck theorem
dc.subject.keywordPontryagin duality theorem
dc.subject.keyworddual group
dc.subject.keywordconvergence group
dc.subject.keywordcontinuous convergence
dc.subject.keywordreflexive group
dc.subject.keywordk-space
dc.subject.keywordk-group
dc.subject.keywordPontryagin duality
dc.subject.keywordCompact
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleCompleteness properties of locally quasi-convex groups
dc.typejournal article
dc.volume.number111
dcterms.referencesL. Außenhofer, Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups, Doctoral Dissertation, 1998, Dissertationes Mathematicae, to appear. W. Banaszczyk, Additive Subgroups of Topological Vector Spaces, Lecture Notes in Math., Vol. 1466, Springer, Berlin, 1991. E. Binz, Continuous Convergence on C(X), Lecture Notes in Math., Vol. 469, Springer, Berlin, 1975. E. Binz, H.P. Butzmann, K. Kutzler, Über den c -Dual eines topologischen Vektorraumes, Math. Z. 127 (1972) 70–74. N. Bourbaki, Topologie Général, Actualités Scientifiques, Hermann, Paris, 1960. M. Bruguera, Grupos topológicos y grupos de convergencia: Estudio de la dualidad de Pontryagin, Doctoral Dissertation, 1999. M. Bruguera, M.J. Chasco, Strong reflexivity of Abelian groups, Preprint. H.-P. Butzmann, Über die c -Reflexivität von Cc (X), Comment. Math. Helv. 127 (1972) 92–101. H.-P. Butzmann, Pontrjagin-Dualität für topologische Vektorräume, Arch. Math. 28 (1977) 632–637. H.-P. Butzmann, Duality theory for convergence groups, Topology Appl. 111 (2001) 95–104 (this volume). M.J. Chasco, Pontryagin duality for metrizable groups, Arch. Math. 70 (1998) 22–28. M.J. Chasco, E. Martín-Peinador, Binz–Butzmann duality versus Pontryagin duality, Arch. Math. 63 (3) (1994) 264–270. M.J. Chasco, E. Martín-Peinador, V. Tarieladze, On Mackey topology for groups, Studia Math. 132 (1999) 257–284. W.W. Comfort, S. Hernández, F.J. Trigos-Arrieta, Relating a locally compact abelian group to its Bohr compactification, Adv. Math. 120 (1996) 322–344. H.R. Fischer, Limesräume, Math. Ann. 137 (1959) 269–303. E. Hewitt, K.A. Ross, Abstract Harmonic Analysis, I, Grundl. Math. Wiss., Vol. 115, Springer, Berlin, 1963. S. Kaplan, Extensions of the Pontryagin duality, I: Infinite products, Duke Math. 15 (1948) 649–658. J.L. Kelley, Convergence in topology, Math. J. 17 (1950) 277–283. E. Martín-Peinador, A reflexive admissible topological group must be locally compact, Proc. Amer. Math. Soc. 123 (1995) 3563–3566. P. Nickolas, Reflexivity of topological groups, Proc. Amer. Math. Soc. 65 (1977) 137–141. H.H. Schaefer, Topological Vector Spaces, Graduate Texts in Math., Vol. 3, Springer, Berlin, 1970. M.F. Smith, The Pontryagin duality theorem in linear spaces, Ann. Math. 56 (2) (1952) 248–253. E.H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966. N.Ya. Vilenkin, The theory of characters of topological Abelian groups with boundedness given, Izv. Akad. Nauk SSSR. Ser. Mat. 15 (1951) 439–462.
dspace.entity.typePublication
relation.isAuthorOfPublication0074400c-5caa-43fa-9c45-61c4b6f02093
relation.isAuthorOfPublication26c13c99-272d-4261-8a6b-caef686ac19b
relation.isAuthorOfPublication.latestForDiscovery0074400c-5caa-43fa-9c45-61c4b6f02093

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MPeina07.pdf
Size:
119.6 KB
Format:
Adobe Portable Document Format

Collections