Generation of Interval-Valued Fuzzy Negations from Trillas’ Theorem. The Case of Interval Type-2 Fuzzy Sets
dc.book.title | Enric Trillas: A Passion for Fuzzy Sets. A Collection of Recent Works on Fuzzy Logic | |
dc.contributor.author | Bustince, Humberto | |
dc.contributor.author | Barrenechea, Edurne | |
dc.contributor.author | Fernández Castillo, Jesús | |
dc.contributor.author | Pagola, Miguel | |
dc.contributor.author | Montero De Juan, Francisco Javier | |
dc.contributor.editor | Magdalena, Luis | |
dc.contributor.editor | Verdegay, José Luis | |
dc.contributor.editor | Esteva, Francesc | |
dc.date.accessioned | 2023-06-19T15:54:31Z | |
dc.date.available | 2023-06-19T15:54:31Z | |
dc.date.issued | 2015 | |
dc.description.abstract | In this work we introduce a method for building interval-valued negations using the characterization theorem for strong negations which was proposed by Trillas in 1979. We also show that interval type-2 fuzzy sets are a three dimensional representation of interval-valued fuzzy sets and we analyze the problems to build complementation for such interval type-2 fuzzy sets. We finally propose a method to construct this complementation. | en |
dc.description.department | Depto. de Estadística e Investigación Operativa | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades (España) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/29529 | |
dc.identifier.citation | Bustince, H., Barrenechea, E., Fernández, J., Pagola, M., Montero, J.: Generation of Interval-Valued Fuzzy Negations from Trillas’ Theorem. The Case of Interval Type-2 Fuzzy Sets. En: Magdalena, L., Verdegay, J.L., y Esteva, F. (eds.) Enric Trillas: A Passion for Fuzzy Sets. pp. 93-108. Springer International Publishing, Cham (2015) | |
dc.identifier.doi | 10.1007/978-3-319-16235-5_8 | |
dc.identifier.isbn | 978-3-319-16234-8 | |
dc.identifier.officialurl | https//doi.org/10.1007/978-3-319-16235-5_8 | |
dc.identifier.relatedurl | http://link.springer.com/chapter/10.1007/978-3-319-16235-5_8 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/35725 | |
dc.issue.number | 322 | |
dc.language.iso | eng | |
dc.page.final | 108 | |
dc.page.initial | 93 | |
dc.page.total | 335 | |
dc.publisher | Springer International Publishing | |
dc.relation.ispartofseries | Studies in Fuzziness and Soft Computing | |
dc.relation.projectID | TIN2013-40765-P and TIN2012-3248 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 510.64 | |
dc.subject.keyword | Interval-valued negation | |
dc.subject.keyword | Interval-valud fuzzy sets | |
dc.subject.keyword | Interval type 2 fuzzy set | |
dc.subject.keyword | Complementation | |
dc.subject.ucm | Lógica simbólica y matemática (Matemáticas) | |
dc.subject.unesco | 1102.14 Lógica Simbólica | |
dc.title | Generation of Interval-Valued Fuzzy Negations from Trillas’ Theorem. The Case of Interval Type-2 Fuzzy Sets | en |
dc.type | book part | |
dcterms.references | Arnauld, T, Tano, S (1995) Interval-valued fuzzy backward reasoning. IEEE Trans. Fuzzy Syst. 3: pp. 425-437 CrossRef Atanassov, K.: Intuitionistic fuzzy sets, VII ITKR’s Session. Deposed in Central Science and Technical Library of Bulgaria Academy of Science, Sofia, June (1983) Atanassov, K (1999) Intuitionistic Fuzzy Sets. Physica-Verlag, Heidelberg Bedregal, B, Beliakov, G, Bustince, H, Calvo, T, Mesiar, R, Paternain, D (2012) A class of fuzzy multisets with a fixed number of memberships. Inf. Sci. 189: pp. 1-17 CrossRef Burillo, P, Bustince, H (1996) Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets Syst. 78: pp. 305-3016 Burillo, P, Bustince, H (1995) Orderings in the referential set induced by an intuitionistic fuzzy relation. Notes IFS 1: pp. 93-103 Burillo, P, Bustince, H (1996) Construction theorems for intuitionistic fuzzy sets. Fuzzy Sets Syst. 84: pp. 271-281 Bustince, H, Barrenechea, E, Pagola, M (2008) Generation of interval-valued fuzzy and Atanassov’s intuitionistic fuzzy connectives from fuzzy connectives and from K(alpha) operators: laws for conjunctions and disjunctions, amplitude. Int. J. Intell. Syst. 23: pp. 680-714 Bustince, H, Galar, M, Bedregal, B, Kolesárová, A, Mesiar, R (2013) A new approach to interval-valued Choquet integrals and the problem of ordering in interval-valued fuzzy set applications. IEEE Trans. Fuzzy Syst. 21: pp. 1150-1162 Bustince, H, Fernandez, J, Kolesárová, A, Mesiar, R (2013) Generation of linear orders for intervals by means of aggregation functions. Fuzzy Sets Syst. 220: pp. 69-77 Bustince, H (2000) Indicator of inclusion grade for interval-valued fuzzy sets. Application to approximate reasoning based on interval-valued fuzzy sets. Int. J. Approx. Reason. 23: pp. 137-209 Bustince, H, Burillo, P (2000) Mathematical analysis of interval-valued fuzzy relations: application to approximate reasoning. Fuzzy Sets Syst. 113: pp. 205-219 CrossRef Bustince, H, Burillo, P (1996) Structures on intuitionistic fuzzy relations. Fuzzy Sets Syst. 78: pp. 293-303 CrossRef Bustince, H, Kacprzyk, J, Mohedano, V (2000) Intuitionistic fuzzy generators. Application to Intuitionistic fuzzy complementation. Fuzzy Sets Syst. 114: pp. 485-504 CrossRef Bustince, H., Montero, J., Pagola, M., Barrenechea, E., Gómez, D.: A survey on interval-valued fuzzy sets. In: Pedrycz, W., Skowron, A., Kreinovichedrycz, V. (eds.) Handbook of Granular Computing. Wiley, New York (2007) Bustince, H, Herrera, F, Montero, J eds. (2007) Fuzzy Sets and Their Extensions: Representation, Aggregation and Models. Springer, Berlin Bustince, H., Fernandez, J., Hagras, H., Herrera, F., Pagola, M., Barrenechea, E.: Interval type-2 fuzzy sets are generalization of IVFSs: towards a wider view on their relationship, in Press. IEEE Trans. Fuzzy Syst. doi:10.1109/TFUZZ.2014.2362149 Chen, SM, Hsiao, WH, Jong, WT (1997) Bidirectional approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst. 91: pp. 339-353 Deschrijver, G, Cornelis, C, Kerre, EE (2004) On the representation of intuitionistic fuzzy T-Norms and T-Conorms. IEEE Trans. Fuzzy Syst. 12: pp. 45-61 CrossRef Goguen, JA (1967) L-Fuzzy sets. J. Math. Anal. Appl. 18: pp. 623-668 Gorzalczany, MB (1987) A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst. 21: pp. 1-17 Grattan-Guinness, I (1976) Fuzzy membership mapped onto interval and many-valued quantities. Zeitschrift für mathematische Logik und Grundladen der Mathematik 22: pp. 149-160 Hernández, P., Cubillo, S., Torres-Blanc, C.: Negations on type-2 fuzzy sets. Fuzzy Sets Syst. 90 (2014) Hernández, P (2014) Contribución al estudio de las negaciones, autocontradicciones, t-normas y t-conormas en los conjuntos borrosos de tipo-2. Tesis Doctoral, Junio Jenei, S (1997) A more efficient method for defining fuzzy connectives. Fuzzy Sets Syst. 90: pp. 25-35 Karnik, NN, Mendel, JM, Liang, Q (1999) Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7: pp. 643-658 CrossRef Klir, G, Yuan, B (1995) Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, Upper Saddle River Kohout, L.J., Bandler, W.: Fuzzy interval inference utilizing the checklist paradigm and BK-relational products. In: Kearfort, R.B.: et al. (eds.) Application of Interval Computations, pp 291–335, Kluwer, Dordrecht (1996) Mendel, JM, Robert, I, John, B (2002) Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10: pp. 117-127 Mendel, JM, John, RI, Liu, F (2006) Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14: pp. 808-821 Mendel, JM (2007) Advances in type-2 fuzzy sets and systems. Inf. Sci. 177: pp. 84-110 Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, Upper Saddle River. Prentice-Hall (2001) Mizumoto, M., Tanaka, K.: Some properties of fuzzy sets of type 2. Inf. Control 31, 312–340 (1976) Miyamoto, S Multisets and fuzzy multisets. In: Liu, Z-Q, Miyamoto, S eds. (2000) Soft Computing and Human-Centered Machines. Springer, Berlin, pp. 9-33 Montero, J, Gómez, D, Bustince, H (2007) On the relevance of some families of fuzzy sets. Fuzzy Sets Syst. 158: pp. 2429-2442 Roy, MK, Biswas, R (1992) I-v fuzzy relations and Sanchez’s approach for medical diagnosis. Fuzzy Sets Syst. 47: pp. 35-38 Sambuc, R (1975) Function -Flous, Application a l’aide au Diagnostic en Pathologie Thyroidienne. These de Doctorat en Medicine, Marseille Torra, V (2010) Hesitant fuzzy sets. Int. J. Intell. Syst. 25: pp. 529-539 Trillas, E.: Sobre funciones de negación en la teoría de conjuntos difusos. Stochastica, III-1 (1979) 47–59, (in Spanish). Reprinted (English version) (1998) In: Barro, S. et al. (Eds.) Advances of Fuzzy Logic, pp 31–43, Tri-Universidad de Santiago de Compostela Turksen, IB (1992) Interval-valued fuzzy sets and compensatory AND. Fuzzy Sets Syst. 51: pp. 295-307 Yager, RR (1986) On the theory of bags. Int. J. Gen. Syst. 13: pp. 23-37 Zadeh, LA (1973) Outline of a new approach to analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 3: pp. 28-44 Zadeh, L.A.: Theory of approximate reasoning. In: Hayes, J.E., Michie, D., Mikulich, L.I. (eds.) Machine Intelligence, pp. 149–194, Ellis Horwood Ltd., Chichester (1970) | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 69f554a0-8daf-41d4-ae44-790789246eef | |
relation.isAuthorOfPublication | 9e4cf7df-686c-452d-a98e-7b2602e9e0ea | |
relation.isAuthorOfPublication.latestForDiscovery | 69f554a0-8daf-41d4-ae44-790789246eef |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Bustince2015_Chapter_GenerationOfInterval-ValuedFuz.pdf
- Size:
- 487.79 KB
- Format:
- Adobe Portable Document Format