Effects of the electronic structure on the dc conductance of Fibonacci superlattices

dc.contributor.authorMaciá Barber, Enrique Alfonso
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.contributor.authorSánchez, Angel
dc.date.accessioned2023-06-20T19:12:47Z
dc.date.available2023-06-20T19:12:47Z
dc.date.issued1994-04-01
dc.description© 1994 The American Physical Society. A.S. is partially supported by DGICy T (Spain) through Project No. PB92-0248, and by European Union through NETWORK nonlinear Spatio-Temporal Structures in Semiconductors, Fluids, and Oscillator Ensembles
dc.description.abstractWe derive a discrete Hamiltonian describing a Fibonacci superlattice in which the electronic potential is taken to be an array of equally spaced delta potentials, whose strengths modulate the chemical composition in the growth direction. In this model both diagonal and off-diagonal elements of the Hamiltonian matrix become mutually related through the potential strengths. The corresponding energy spectrum and related magnitudes, such as the Lyapunov coefficient, transmission coefficient, and Landauer resistance, exhibit a highly fragmented, self-similar nature. We investigate the influence of the underlying spectrum structure on the dc conductance at different temperatures obtaining analytical expressions which relate special features of the dc conductance with certain parameters that characterize the electronic spectrum of Fibonacci superlattices.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGICy T (Spain)
dc.description.sponsorshipEuropean Union
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28074
dc.identifier.citation1. M. Kohmoto, L. P. Kadanoff, and C. Tang, Phys. Rev. Lett. 50, 1870 (1983). 2. S. Ostlund and R. Pandit, Phys. Rev. B 29, 1394 (1984). 3. S. N. Karmakar, A. Chakrabarti, and R. K. Moitra, J. Phys. Condens. Matter 1, 1423 (1989). 4. G. Y. Oh, C. S. Ryu, and M. H. Lee, J. Phys. Condens. Matter 4, 8187 (1992). 5. M. Severin and R. Riklund, Phys. Rev. B 39, 10 362 (1989). 6. Y. Kim, M. H. Lee, and M. Y. Choi, Phys. Rev. B 40, 2581 (1989). 7. R. Merlin, K. Bajema, R. Clarke, F. -Y. Juang, and P. k. Bhattacharya, Phys. Rev. Lett 55, 1768.(1985). 8. J. Todd, R. Merlin, R. Clarke, K. M. Mohanty, and J. D. Axe, Phys. Rev. Lett. 5T, 1157 (1986). 9. F. Laruelle and B. Etienne, Phys. Rev. B 3T, 4816 (1988). 10. M. Nakayama, H. Kato, and S. Nakashima, Phys. Rev. B 36, 3472 (1987). 11. K. Kono, S. Nakada, Y. Narahara, and Y. Ootuka, J. Phys. Soc. Jpn. 60, 368 (1991). 12. D. Tuet, M. Potemski, Y. Y. Wang, J. C. Maan, L. Tapfer, and K. Ploog, Phys. Rev. Lett. 66, 2128 (1991). 13. A. Chakrabarti, S. N. Karmakar, and R. K. Moitra, Phys. Lett. A 168, 301 (1992). 14. P. Hawrylak and J. Quinn, Phys. Rev. Lett. 57, 380 (1986). 15. H. Hiramoto and M. Kohmoto, Phys. Rev. Lett. B2, 2714 (1989). 16. A. Yamaguchi, T. Saiki, T. Ninomiya, K. Missa, and T. Kobayashi, Solid State Commun. 75, 955 (1990). 17. S. Katsumoto, N. Sano, and S. Kobayashi, Solid State Commun. 85, 223 (1993). 18. V. Kumar, J. Phys. Condens. Matter 2, 1349 (1990). 19. F. Domínguez-Adame, J. Phys. Condens. Matter 1, 109 (1989). 20. P. Erdös and R. C. Herndon, Helv. Phys. Acta 50, 513 (1977). 21. R. E. Borland, Proc. R. Soc. London Ser. A 274, 529 (1963). 22. J. B. SokolofF, Phys. Rep. 126, 189 (1985). 23. Y. Liu and R. Riklund, Phys. Rev. B 35, 6034 (1987). 24. Y. Liu and W. Sritrakool, Phys. Rev. B 43, 1110 (1991). 25. N. Niu and F. Nori, Phys. Rev. Lett. 57, 2057 (1986); Phys. Rev. B 42, 10329 (1990). 26.R. Landauer, IBM J. Res. Dev. 1, 223 (1957). 27. S. Das Sarma and X. C. Xie, Phys. Rev. B 3T, 1097 (1988). 28. H. L. Engquist and P. W. Anderson, Phys. Rev. B24, 1151 (1981).
dc.identifier.doi10.1103/PhysRevB.49.9503
dc.identifier.issn0163-1829
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.49.9503
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59397
dc.issue.number14
dc.journal.titlePhysical Review B
dc.language.isoeng
dc.page.final9510
dc.page.initial9503
dc.publisherAmerican Physical Society
dc.relation.projectIDPB92-0248
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordOne-dimensional quasicrystals
dc.subject.keywordQuasiperiodic superlattices
dc.subject.keywordRenormalization-group
dc.subject.keywordEnergy-spectrum
dc.subject.keywordWave-function
dc.subject.keywordStates
dc.subject.keywordLocalization
dc.subject.keywordLattices
dc.subject.keywordCrystals
dc.subject.keywordSystem
dc.subject.ucmFísica de materiales
dc.titleEffects of the electronic structure on the dc conductance of Fibonacci superlattices
dc.typejournal article
dc.volume.number49
dspace.entity.typePublication
relation.isAuthorOfPublicationdd37b3ce-0186-44e8-a4b6-62cef9121754
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication.latestForDiscoverydd37b3ce-0186-44e8-a4b6-62cef9121754
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dguez-Adame160libre.pdf
Size:
441.98 KB
Format:
Adobe Portable Document Format
Collections