Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Limit points of lines of minima in Thurston's boundary of Teichmüller space

dc.contributor.authorDíaz Sánchez, Raquel
dc.contributor.authorSeries, Caroline
dc.date.accessioned2023-06-20T16:54:23Z
dc.date.available2023-06-20T16:54:23Z
dc.date.issued2003
dc.description.abstractGiven two measured laminations µ and ν in a hyperbolic sur-face which fill up the surface, Kerckhoff defines an associated line of minima along which convex combinations of the length functions of µ andν are minimised. This is a line in Teichmüller space which can be thought as analogous to the geodesic in hyperbolic space determined by two points at infinity. We show that when µ is uniquely ergodic, this line converges to the projective lamination [µ], but that when µ is rational, the line converges not to [µ], but rather to the barycentre of the support of µ. Similar results on the behaviour of Teichmüller geodesics have been proved by Masur
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15710
dc.identifier.issn1472-2747
dc.identifier.officialurlhttp://emis.math.ca/journals/UW/agt/ftp/main/2003/agt-3-9.pdf
dc.identifier.relatedurlhttp://emis.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57389
dc.journal.titleAlgebraic and Geometric Topology
dc.language.isoeng
dc.page.final234
dc.page.initial207
dc.publisherMathematical Sciences Publishers
dc.rights.accessRightsopen access
dc.subject.cdu514
dc.subject.keywordModuli of Riemann surfaces
dc.subject.keywordTeichmüller theory
dc.subject.keywordFuchsian groups and their generalizations
dc.subject.keywordQuasiconformal methods and Teichmüller theory
dc.subject.keywordFuchsian and Kleinian groups as dynamical systems
dc.subject.keywordGeometric structures on low-dimensional manifolds
dc.subject.ucmGeometría
dc.subject.unesco1204 Geometría
dc.titleLimit points of lines of minima in Thurston's boundary of Teichmüller space
dc.typejournal article
dc.volume.number3
dcterms.referencesA. J. Casson and S. A. Bleiler. Automorphisms of surfaces after Nielsen and Thurston. LMS Lecture Notes 9. Cambridge University Press, 1988 F. Bonahon. Bouts des variétés de dimension 3. Ann. Math. 124(1), 71–158, 1986. R. Díaz and C. Series. Examples of pleating varieties for the twice punctured torus. Trans. A.M.S., to appear. A. Fahti, P. Laudenbach, and V. Poénaru. Travaux de Thurston sur les surfaces, Astérisque 66–67. Société Mathématique de France, 1979. E. Ghys and P. de la Harpe (eds.). Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Math. 83. Birkhäuser, 1990 S. Kerckhoff. Earthquakes are analytic. Comment. Mat. Helv. 60, 17–30, 1985. S. Kerckhoff. The Nielsen realization problem. Ann. Math. 117(2), 235–265, 1983. S. Kerckhoff. Lines of Minima in Teichmüller space. Duke Math J. 65, 187–213, 1992. H. Masur. Two boundaries of Teichmüller space. Duke Math. J. 49, 183–190, 1982. R. C. Penner with J. Harer. Combinatorics of Train Tracks. Annals of Math. Studies 125. Princeton University Press, 1992. J-P. Otal. Le théorème d'hyperbolisation pour les variétés fibrées de dimension 3. Astérisque 235. Société Mathématique de France, 1996 1M. Rees. An alternative approach to the ergodic theory of measured foliations on surfaces. Ergodic Th. and Dyn. Sys. 1, 461–488, 1981. C. Series. An extension of Wolpert's derivative formula. Pacific J. Math. 197, 223–239, 2000. C. Series. On Kerckhoff Minima and Pleating Loci for Quasifuchsian Groups. Geometriae Dedicata 88, 211–237, 2001. C. Series. Limits of quasifuchsian groups with small bending. Warwick preprint, July 2002. W.P. Thurston. The Geometry and Topology of Three-Manifolds. Lecture notes, Princeton University, 1980.
dspace.entity.typePublication
relation.isAuthorOfPublicationad6ca69d-67a0-4e6d-9177-6a5439e93ce3
relation.isAuthorOfPublication.latestForDiscoveryad6ca69d-67a0-4e6d-9177-6a5439e93ce3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DiazRaquel03.pdf
Size:
272.06 KB
Format:
Adobe Portable Document Format

Collections