Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Fe solubility, growth mechanism, and luminescence of Fe doped ZnO nanowires and nanorods grown by evaporation-deposition

dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.contributor.authorAlemán Llorente, Belén
dc.contributor.authorOrtega Villafuerte, Yanicet
dc.contributor.authorGarcía Martínez, José Ángel
dc.date.accessioned2023-06-20T03:36:32Z
dc.date.available2023-06-20T03:36:32Z
dc.date.issued2011-07-01
dc.description© 2011 American Institute of Physics. This work was supported by MCINN (MAT2009-07882, CSD2009-00013) and UCM-BSCH (Group 910146).
dc.description.abstractFe dopedZnO nanowires,nanorods, and urchin-like nanostructures have been grown using an evaporation-deposition method with compacted mixtures of ZnS and Fe_2O_3 powders, with different Fe contents as precursors. Treatments at 950 °C under argon flow lead to the growth of irondopednanowires,nanorods, and other nanostructures on the surface of the compacted sample. The incorporation of iron into the nanostructures has been investigated via energy dispersive spectroscopy as well as by cathodoluminescence in a scanning electron microscope and photoluminescence in an optical microscope. The iron content in the structures is limited to the range of 0.5–0.7 at.% and does not depend on the content in the precursor. Bright and dark field imaging and twist contour analysis via transmission electron microscopy support the possibility of a dislocation driven growth of the nanowires.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMICINN (Ministerio de Ciencia e Innovación, España)
dc.description.sponsorshipUCM-BSCH (Group)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23635
dc.identifier.doi10.1063/1.3609073
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.3609073
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44029
dc.issue.number1
dc.journal.titleJournal of Applied Physics
dc.language.isoeng
dc.page.final1
dc.page.initial014317
dc.publisherAmerican Institute of Physics
dc.relation.projectIDMAT2009-07882
dc.relation.projectIDCSD2009-00013
dc.relation.projectID910146
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordDislocation
dc.subject.keywordDriven
dc.subject.keywordTwist
dc.subject.keywordPhotoluminescence
dc.subject.keywordWhisker
dc.subject.keywordArrays
dc.subject.ucmFísica de materiales
dc.titleFe solubility, growth mechanism, and luminescence of Fe doped ZnO nanowires and nanorods grown by evaporation-deposition
dc.typejournal article
dc.volume.number110
dcterms.references1. C. X. Xu, X. W. Sun, Z. L. Dong, M. B. Yu, Y. Z. Xiong, and J. S. Chen, Appl. Phys. Lett. 86, 173110 (2005). 2. S. Baek, J. Song, and S. Lim, Physica B 399, 101 (2007). 3. E. Oh, S. H. Jung, S. H. Jeong, S. Yu, and S. J. Rhee, Mater. Lett. 62, 3456 (2008). 4. B. Zhang, S. Zhou, H. Wang, and Z. Du, Chin. Sci. Bull. 53, 1639 (2008). 5. S. Mü ller, M. Zhou, Q. Li, and C. Ronning, Nanotechnology 20, 135704 (2009). 6. L. Khomenkova, P. Fernández, and J. Piqueras, Cryst. Growth Des. 7, 836 (2007). 7. O. Ko¨ster-Scherger, H. Schmid, N. Vanderschaeghe, F. Wolf, and W. Mader, J. Am. Ceram. Soc. 90, 3984 (2007). 8. J. Chen, J. Liu, A. West, Y. Yan, M. Yu, and W. Zhou, IEEE Trans. Magn. 44, 2681 (2008). 9. Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, and H. Koinuma, Appl. Phys. Lett. 78, 3824 (2001). 10. M. J. Bierman, Y. K. A. Lau, A. V. Kvit, A. L. Schmitt, and S. Jin, Science 320, 1060 (2008). 11. S. A. Morin, M. J. Bierman, J. Tong, and S. Jin, Science 328, 476 (2010). 12. S. Jin, M. J. Bierman, and S. A. Morin, J. Phys. Chem. Lett. 1, 1472 (2010). 13. S. A. Morin and S. Jin, Nano Lett. 10, 3459 (2010). 14. G. W. Sears, Acta Metall. 3, 367 (1955). 15. F. C. Frank, Acta Crystallogr. 4, 497 (1951). 16. D. Maestre, D. Häussler, A. Cremades, W. Jäger, and J. Piqueras, Cryst. Growth Des. 11, 1117 (2011). 17. C. M. Drum, J. Appl. Phys. 36, 824 (1965). 18. J. D. Eshelby, J. Appl. Phys. 24, 176 (1953). 19. J. D. Eshelby, Philos. Mag. 3, 440 (1958). 20. B. Sieber, A. Addad, S. Szuneris, and R. Boukherroub, J. Phys. Chem. Lett. 1, 3033 (2010). 21. A. Urbieta, P. Fernández, and J. Piqueras, Appl. Phys. Lett. 85, 5968 (2004).
dspace.entity.typePublication
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication2c56123a-d96e-428d-83ce-d134110a2ef3
relation.isAuthorOfPublication.latestForDiscovery2c56123a-d96e-428d-83ce-d134110a2ef3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PiquerasJ29libre.pdf
Size:
2.19 MB
Format:
Adobe Portable Document Format

Collections