The Whitehead link, the Borromean rings and the knot 946 are universal.
Loading...
Download
Full text at PDC
Publication date
1983
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citation
Abstract
W. Thurston proved the existence of universal links L⊂S3 which are defined by the property that every closed orientable 3-manifold is a branched covering over L⊂S3. The authors answered earlier [Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 3, 449–450;] Thurston's question of whether there are universal knots in the affirmative. In the paper under review, they start from the fact that every closed orientable 3-manifold is an irregular 3-fold covering over a negative closed braid, and proceed by changing the braid by certain moves which do not alter the covering manifold. Thus they arrive at the conclusion that the Whitehead link, the Borromean rings and the knot 946 are universal. Whether the figure-eight knot is universal remains an open question.