Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Evolutionary optimization algorithms for nonimaging optical design

dc.contributor.authorGarcía Botella, Ángel
dc.contributor.authorVázquez Moliní, Daniel
dc.contributor.authorGarcía Fernández, Berta
dc.contributor.authorÁlvarez Fernández-Balbuena, Antonio
dc.date.accessioned2023-06-17T13:29:40Z
dc.date.available2023-06-17T13:29:40Z
dc.date.issued2019-09-09
dc.descriptionProceedings Volume 11120, Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XVI; 111200M (2019) Event: SPIE Optical Engineering + Applications, 2019, San Diego, California, United States Copyright 2019. Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
dc.description.abstractEvolutionary optimization algorithms have been recently introduced as nonimaging optics design techniques. Unlike optimization of imaging systems, non sequential ray tracing simulations and complex non centred systems design must be considered, adding complexity to the problem. The Merit Function (MF) is a key element in the automatic optimization algorithm, nevertheless the selection of each objective's weight, {wi}, inside merit function needs a previous trial and error process for each optimization. The problem then is to determine appropriate weights value for each objective. In this paper we propose a new Dynamic Merit Function, DMF, with variable weight factors {wi(n)}. The proposed algorithm, automatically adapts weight factors, during the evolution of the optimization process. This dynamic merit function avoids the previous trial and error procedure selecting the right merit function and provides better results than conventional merit functions (CMF). Also we analyse the Multistart optimization algorithm applied in the flowline nonimaging design technique.
dc.description.departmentSección Deptal. de Óptica (Óptica)
dc.description.facultyFac. de Óptica y Optometría
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/57144
dc.identifier.doi10.1117/12.2529180
dc.identifier.issn0277-786X
dc.identifier.officialurlhttps://doi.org/10.1117/12.2529180
dc.identifier.relatedurlhttps://www.spiedigitallibrary.org/conference-proceedings-of-spie/11120/111200M/Evolutionary-optimization-algorithms-for-nonimaging-optical-design/10.1117/12.2529180.full
dc.identifier.urihttps://hdl.handle.net/20.500.14352/13618
dc.journal.titleProceedings of SPIE
dc.language.isoeng
dc.page.initial8 p.
dc.publisherSPIE
dc.rights.accessRightsopen access
dc.subject.cdu628.9
dc.subject.cdu771.44
dc.subject.cdu537.533.3
dc.subject.keywordNonimaging optic
dc.subject.keywordOptical design
dc.subject.keywordOptimization algorithms
dc.subject.keywordDynamic merit function
dc.subject.ucmElectricidad
dc.subject.ucmÓptica (Física)
dc.subject.ucmOptoelectrónica
dc.subject.unesco2202.03 Electricidad
dc.subject.unesco2209.19 Óptica Física
dc.titleEvolutionary optimization algorithms for nonimaging optical design
dc.typejournal article
dc.volume.number111200
dspace.entity.typePublication
relation.isAuthorOfPublication66947707-bb8e-476d-8178-cd98a8796992
relation.isAuthorOfPublication.latestForDiscovery66947707-bb8e-476d-8178-cd98a8796992

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Vazquez molini_111200M.pdf
Size:
446.77 KB
Format:
Adobe Portable Document Format

Collections