Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The Hereditary Dunford-Pettis Property On C(K,E)

dc.contributor.authorCembranos Díaz, María Del Pilar
dc.date.accessioned2023-06-21T02:01:33Z
dc.date.available2023-06-21T02:01:33Z
dc.date.issued1987
dc.description.abstractThe author studies the hereditary Dunford-Pettis property for spaces CX(K) of continuous Xvalued functions (X a Banach space) on a compact Hausdorff space K. First, she shows that CX(K) has the hereditary Dunford-Pettis property if and only if one of the following holds: (a) K is finite andX has the hereditary Dunford-Pettis property; (b) C(K) and c0(X) have the hereditary Dunford-Pettis property. Unwilling to give up here, the author provides an elegant characterization of when c0(X) has the hereditary Dunford-Pettis property. Since the paper was written, Nunez has provided an elegant example (based on work of Talagrand) of an X such that, while X is hereditarily Dunford-Pettis, c0(X) is not. Remarkable and satisfying!en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipThe Board Of Trustees Of The University Of Illinois
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14928
dc.identifier.issn0019-2082
dc.identifier.officialurlhttp.://dx.doi.org/10.2307/2044800
dc.identifier.relatedurlhttp://projecteuclid.org/euclid.ijm/1256069289
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64613
dc.issue.number3
dc.journal.titleIllinois Journal of Mathematics
dc.language.isoeng
dc.page.final373
dc.page.initial365
dc.publisherUniversity of Illinois
dc.relation.projectIDSupported In Part By CAICYT Grant 0338-84 (España).
dc.rights.accessRightsopen access
dc.subject.cdu517
dc.subject.keywordMathematics
dc.subject.ucmAnálisis matemático
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleThe Hereditary Dunford-Pettis Property On C(K,E)en
dc.typejournal article
dc.volume.number31
dcterms.references1. J. DIESTEL, A survey of results related to the Dunford-Pettis property, Contemporary Mathematics, vol. 2 (1980), pp. 15-60. 2. I. DOBIKOV, On representation of linear operators on Co(T, X), Czech. Math. J., vol. 21 (1971), pp. 13-30. 3. A. GROTHENDIV.CK, Sur les applications lin$.aires faiblement compactes d’espaces du type C( K), Canad, J. Math., vol. 5 (1953), pp. 129-173. 4. J. HAGLV.I, A counterexample to several questions about Banach spaces, Studia Math., vol..,55 (1977), pp. 289-308. 5. J. LINDENSTRAUSS and L. TZAFRIRI, Classical Banach Spaces I, Springer-Verlag, New York, 1977. 6. A. PLCZYNSrd and W. SZUNK, An example of a non-shrinking basis, Rev. Roumaine Math. Pures Appl., vol. 10 (1965), pp. 961-966. 7. Z. S.MADNL Banach spaces of continuous functions, PWN, Warsaw 1971. 8. M. TAtSRAND, The Dunford-Pettis property in C([0,1], E)and LX(E), Israel J. Math., vol. 44 (1983), pp. 317-321.
dspace.entity.typePublication
relation.isAuthorOfPublicationa09c0500-e6a7-40f8-beeb-85fc6a870c2d
relation.isAuthorOfPublication.latestForDiscoverya09c0500-e6a7-40f8-beeb-85fc6a870c2d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
07.pdf
Size:
700.7 KB
Format:
Adobe Portable Document Format

Collections