Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Polynomially continuous operators

dc.contributor.authorLlavona, José G.
dc.contributor.authorGutiérrez, Joaquín M.
dc.date.accessioned2023-06-20T16:57:26Z
dc.date.available2023-06-20T16:57:26Z
dc.date.issued1997
dc.description.abstractA mapping between Banach spaces is said to be polynomially continuous if its restriction to any bounded set is uniformly continuous for the weak polynomial topology. Every compact (linear) operator is polynomially continuous. We prove that every polynomially continuous operator is weakly compact.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16279
dc.identifier.doi10.1007/BF02773798
dc.identifier.issn0021-2172
dc.identifier.officialurlhttp://www.springerlink.com/content/67414688531p4130/fulltext.pdf
dc.identifier.relatedurlhttp://www.springerlink.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57510
dc.journal.titleIsrael Journal of Mathematics
dc.language.isoeng
dc.page.final187
dc.page.initial179
dc.publisherHebrew University Magnes Press
dc.relation.projectIDPB 93-0452
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.keywordSpace
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titlePolynomially continuous operators
dc.typejournal article
dc.volume.number102
dcterms.referencesR. Alencar, R. M. Aron and S. Dineen, A reflexive space of holomorphic functions in infinitely many variables, Proceedings of the American Mathematical Society 90 (1984), 407–411. R. M. Aron, Y. S. Choi and J. G. Llavona, Estimates by polynomials, Bulletin of the Australian Mathematical Society 52 (1995), 475–486. R. M. Aron, M. Lacruz, R. A. Ryan and A. M. Tonge, The generalized Rademacher functions, Note di Matematica 12 (1992), 15–25. R. M. Aron and J. B. Prolla, Polynomial approximation of differentiable functions on Banach spaces, Journal für die reine und angewandte Mathematik 313 (1980), 195–216. T. K. Carne, B. Cole and T. W. Gamelin, A uniform algebra of analytic functions on a Banach space, Transactions of the American Mathematical Society 314 (1989), 639–659. H. S. Collins, Completeness and compactness in linear topological spaces, Transactions of the American Mathematical Society 79 (1955), 256–280. L. A. Harris, Bounds on the derivatives of holomorphic functions of vectors, in Colloque d'Analyse (L. Nachbin, ed.), Rio de Janeiro, 1972, pp. 145–163. T. Jech, Set Theory, Monographs and Textbooks in Pure and Applied Mathematics 79, Academic Press, New York, 1978. M. Lacruz, Four Aspects of Modern Analysis, Ph.D. Thesis, Kent State University, Kent, OH, 1991. J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in L p -spaces and their applications, Studia Mathematica 29 (1968), 275–326. J. Mujica, Complex Analysis in Banach Spaces, Math. Studies 120, North-Holland, Amsterdam, 1986. R. A. Ryan, Holomorphic mappings on ℓ 1 , Transactions of the American Mathematical Society 302 (1987), 797–811.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GLlavona16.pdf
Size:
273.37 KB
Format:
Adobe Portable Document Format

Collections