Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Analytic surface germs with minimal Pythagoras number

dc.contributor.authorFernando Galván, José Francisco
dc.date.accessioned2023-06-20T16:51:13Z
dc.date.available2023-06-20T16:51:13Z
dc.date.issued2003
dc.descriptionErratum: Analytic surface germs with minimal Pythagoras number.Mathematische Zeitschrift. 250(2005)no. 4, 967-969
dc.description.abstractWe determine all complete intersection surface germs whose Pythagoras number is 2, and find that they are all embedded in R-3 and have the property that every positive semidefinite analytic function germ is a sum of squares of analytic function germs. In addition, we discuss completely these properties for mixed surface germs in R-3. Finally, we find in higher embedding dimension three different families with these same properties.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15229
dc.identifier.doi10.1007/s00209-003-0519-x
dc.identifier.issn0025-5874
dc.identifier.officialurlhttp://www.springerlink.com/content/krjuhbn3kjn9thnl/fulltext.pdf
dc.identifier.relatedurlhttp://www.springerlink.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57236
dc.issue.number4
dc.journal.titleMathematische Zeitschrift
dc.language.isoeng
dc.page.final752
dc.page.initial725
dc.publisherSpringer
dc.relation.projectIDBFM2002-04797
dc.relation.projectIDHPRN-CT-2001-00271
dc.rights.accessRightsrestricted access
dc.subject.cdu511
dc.subject.cdu512.7
dc.subject.keywordPositive Semidefinite Germs
dc.subject.keywordSquares
dc.subject.keywordRings
dc.subject.keywordSums
dc.subject.ucmTeoría de números
dc.subject.ucmGeometria algebraica
dc.subject.unesco1205 Teoría de Números
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleAnalytic surface germs with minimal Pythagoras number
dc.typejournal article
dc.volume.number244
dcterms.referencesArtin, M.: On the solution of analytic equations. Invent. Math. 5, 227–291 (1968) Bochnak, J., Risler, J.-J.: Le th´eor`eme des z´eros pour les vari´et´es analytiques r´eelles de dimension 2. Ann. Sc. ´ Ec. Norm. Sup. 4e serie 8, 353–364 (1975) Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry.NewYork Berlin Heidelberg: Springer Verlag, 1999 Fernando, J.F.: On the Pythagoras numbers of real analytic rings. J. Algebra 243,321–338 (2001) Fernando, J.F.: Positive semidefinite germs in real analytic surfaces. Math. Ann.322(1), 49–67 (2002) Fernando, J.F.: Sums of squares in real analytic rings. Trans.AMS 354(5), 1909–1919 (2002) Fernando, J.F., Ruiz, J.M.: Positive semidefinite germs on the cone. Pacific J. Math. 205, 109–118 (2002) de Jong, T., Pfister, G.: Local Analytic Geometry, Basic Theory and Applications. Advanced Lectures in Mathematics. Braunschweig/Wiesbaden: Vieweg, 2000 Harris, J.:Algebraic Geometry,AFirst Course. GraduateText in Math. 133. Berlin Heidelberg NewYork: Springer Verlag, 1992 Ruiz, J.M.: The Basic Theory of Power Series. Advanced Lectures in Mathematics. BraunschweigWiesbaden: Vieweg Verlag, 1993 Ruiz, J.M.: Sums of two squares in analytic rings. Math. Z. 230, 317–328 (1999) Scheiderer, C.: On sums of squares in local rings. J. reine angew. Math. 540, 205–227 (2001) Stanley, R.: Hilbert functions of gradded algebras. Adv. inMath. 28, 57–83 (1978)
dspace.entity.typePublication
relation.isAuthorOfPublication499732d5-c130-4ea6-8541-c4ec934da408
relation.isAuthorOfPublication.latestForDiscovery499732d5-c130-4ea6-8541-c4ec934da408

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
14.pdf
Size:
296.79 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
14-2.pdf
Size:
109.06 KB
Format:
Adobe Portable Document Format

Collections