Pervaporation of toluene/alcohol mixtures through a coextruded linear low-density polyethylene membrane
dc.contributor.author | García Villaluenga, Juan Pedro | |
dc.contributor.author | Khayet Souhaimi, Mohamed | |
dc.contributor.author | Godino Gómez, María Paz | |
dc.contributor.author | Seoane Rodríguez, Benjamín | |
dc.contributor.author | Mengual Cabezón, Juan Ignacio | |
dc.date.accessioned | 2023-06-20T10:41:26Z | |
dc.date.available | 2023-06-20T10:41:26Z | |
dc.date.issued | 2003-01-22 | |
dc.description | © 2003 American Chemical Society. | |
dc.description.abstract | The pervaporation characteristics of toluene/methanol, toluene/ethanol, and toluene/propanol mixtures through a linear low-density polyethylene membrane were investigated at different feed compositions. These characteristics were obtained from quantities such as the swelling ratio, permeation rate, and selectivity. In all cases toluene permeates preferentially through the membrane, with a separation factor up to 66 and fluxes varying between 0.1 and 1.4 kg/ m2.h. Predictions based on the Flory-Huggins theory have shown that toluene is preferentially sorbed by the membrane. The pervaporation flux increases and the selectivity decreases with the toluene content in the feed. The experimental results show that pure-alcohol fluxes decrease with the molecular size. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/24919 | |
dc.identifier.doi | 10.1021/ie020603e | |
dc.identifier.issn | 0888-5885 | |
dc.identifier.officialurl | http://dx.doi.org/10.1021/ie020603e | |
dc.identifier.relatedurl | http://pubs.acs.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/51003 | |
dc.issue.number | 2 | |
dc.journal.title | Industrial and engineering chemistry research | |
dc.language.iso | eng | |
dc.page.final | 391 | |
dc.page.initial | 386 | |
dc.publisher | American Chemical Society | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 536 | |
dc.subject.keyword | Solution-Diffusion-Model | |
dc.subject.keyword | Alcohol-Toluene Mixtures | |
dc.subject.keyword | Composite Membranes | |
dc.subject.keyword | Blend Membranes | |
dc.subject.keyword | Separation | |
dc.subject.keyword | Sorption | |
dc.subject.keyword | Layer | |
dc.subject.keyword | Organics | |
dc.subject.ucm | Termodinámica | |
dc.subject.unesco | 2213 Termodinámica | |
dc.title | Pervaporation of toluene/alcohol mixtures through a coextruded linear low-density polyethylene membrane | |
dc.type | journal article | |
dc.volume.number | 42 | |
dcterms.references | (1) Wijmans, J. G.; Baker, R. W. The solution-diffusion model: a review. J. Membr. Sci. 1995, 107, 1. (2) Feng, X.; Huang, R. Y. M. Liquid separation by membrane pervaporation: a review. Ind. Eng. Chem. Res. 1997, 36, 1048. (3) Huang, R. Y. M.; Rhim, J. W. Separation characteristics of pervaporation membrane separation processes. In Pervaporation Membrane Separation Process; Huang, R. Y. M., Ed.; Elsevier Publishers BV: Amsterdam, The Netherlands, 1991. (4) Mulder, M. H. V. Thermodynamics principles of pervaporation. In Pervaporation Membrane Separation Process; Huang, R. Y. M., Ed.; Elsevier Publishers BV: Amsterdam, The Netherlands, 1991. (5) Drioli, E.; Zhang, S.; Basile, A. On the coupling effect in pervaporation. J. Membr. Sci. 1993, 81, 43. (6) Kedem, O. The role of coupling in pervaporation. J. Membr. Sci. 1989, 47, 277. (7) Heintz, A.; Funke, H.; Lichtenthaler, R. N. Sorption and diffusion in pervaporation membranes. In Pervaporation Membrane Separation Process; Huang, R. Y. M., Ed.; Elsevier Publishers BV: Amsterdam, The Netherlands, 1991; Chapter 10. (8) Rhim, J.-W.; Huang, R. Y. M. Prediction of pervaporation separation characteristics for the ethanol-water-nylon 4 membrane system. J. Membr. Sci. 1992, 105, 105. (9) Favre, E.; Nguyen, Q. T.; Schaetzel, P.; Clement, R.; Neel, J. Sorption of organic solvents into dense silicone membraness validity and limitations of Flory-Huggins and related theories. J. Chem. Soc., Faraday Trans. 1993, 89, 4339. (10) Heintz, A.; Stephan, W. A generalized solution diffusion model to the pervaporation process through composite membranes. Part I. Prediction of mixture solubilities in dense active layer using the UNIQUAC model. J. Membr. Sci. 1994, 89, 143. (11) Dutta, B. K.; Ji, W.; Sikdar, S. K. Pervaporation: principles and applications. Sep. Purif. Methods 1997, 25, 131. (12) Jonquieres, A.; Clement, A. R.; Roizard, D.; Lochon, P. Pervaporative transport modeling in a ternary system: ethyl tertiary butyl ether/ethanol/polyurethaneimide. J. Membr. Sci. 1996, 109, 65. (13) Raghunath, B.; Hwang, S. T. General Treatment of liquidphase boundary layer resistance in the pervaporation of dilute aqueous organics through tubular membranes. J. Membr. Sci. 1992, 75, 29. (14) Heintz, A.; Stephan, W. A generalized solution diffusion model to the pervaporation process through composite membranes. Part II. Concentration polarization, couple diffusion and the influence of the porous support layer. J. Membr. Sci. 1994, 89, 153. (15) Krishna, R.; Wesseling, J. A. The Maxwell-Stefan approach to mass transfer. Chem. Eng. Sci. 1997, 52, 861. (16) Fleming, H. L.; Slater, C. S. Applications and Economics. In Membrane Handbook; Ho, W. S. W., Winston, W. S., Eds.; Chapman and Hall: New York, 1992; Chapter 10. (17) Park, H. C.; Meertens, R. M.; Mulder, M. H. V.; Smolders, C. A. Pervaporation of alcohol-toluene mixtures through polymer blend membranes of poly(acrylic acid) and poly(vinyl alcohol). J. Membr. Sci. 1994, 90, 265. (18) Park, H. C.; Meertens, R. M.; Mulder, M. H. V. Sorption of alcohol-toluene mixtures in poly(acrylic acid) and poly(vinyl alcohol) blend membranes and its role on pervaporation. Ind. Eng. Chem. Res. 1998, 37, 4408. (19) Duval, J.-M.; Folkers, B.; Mulder, M. H. V.; Desgrandchamps, G.; Smolders, C. A. Separation of a toluene/ethanol mixture by pervaporation using active carbon-filled polymeric membranes. Sep. Sci. Technol. 1994, 29, 357. (20) Zhou, M.; Persin, M.; Sarrazin, J. Methanol removal from organics mixtures by pervaporation using polypyrrole membranes. J. Membr. Sci. 1996, 117, 303. (21) Huang, R. Y. M.; Moon, G. Y.; Pal, R. N-Acetylated chitosan membranes for the pervaporation separation of alcohol/toluene mixtures. J. Membr. Sci. 2000, 176, 223. (22) Bhat, A. A.; Pangarkar, V. G. Methanol-selective membranes for the pervaporation separation of methanol-toluene mixtures. J. Membr. Sci. 2000, 167, 187. (23) Mandal, S.; Pangarkar, V. G. Separation of methanolbenzene and methanol-toluene mixtures by pervaporation: effects of thermodynamics and structural phenomenon. J. Membr. Sci. 2002, 201, 175. (24) Villaluenga, J. P. G.; Seoane, B. Experimental estimation of gas-transport properties of linear low-density polyethylene membranes by an integral permeation method. J. Appl. Polym. Sci. 2001, 82, 3013. (25) Van Krevelen, D. W. Properties of Polymers; Elsevier: Amsterdam, The Netherlands, 1990; Chapter 7. (26) Flory, P. J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, 1953; Chapter 13. (27) Dewan, A. K.; Tao, L. C.; Weber, J. H. Correlation of Wilson parameters with number of carbon atoms for primary alcoholaromatic systems. Ind. Eng. Chem. Process Des. Dev. 1978, 17, 371. (28) Lee, M. Y.; Bougeois, D.; Belfort, G. Sorption, diffusion and pervaporation of organics in polymer membranes. J. Membr. Sci. 1989, 44, 161. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 767d7957-0d58-4121-ab42-43d9165389a9 | |
relation.isAuthorOfPublication | 8e32e718-0959-4e6c-9e04-891d3d43d640 | |
relation.isAuthorOfPublication | 89cfc24c-28fa-46fc-9b17-8eafe78b3a89 | |
relation.isAuthorOfPublication | 2b4858d5-d4ad-4758-866f-222349ee1248 | |
relation.isAuthorOfPublication.latestForDiscovery | 767d7957-0d58-4121-ab42-43d9165389a9 |
Download
Original bundle
1 - 1 of 1