Data-driven exploration of lentic water bodies with ASVs guided by gradient-free optimization/contour detection algorithms
| dc.conference.date | 12-15 Dic 2021 | |
| dc.conference.place | Phoenix, Estados Unidos | |
| dc.conference.title | Winter Simulation Conference 2021 | |
| dc.contributor.author | Besada Portas, Eva | |
| dc.contributor.author | Girón Sierra, José María Ricardo | |
| dc.contributor.author | Jiménez Castellanos, Juan Francisco | |
| dc.contributor.author | López Orozco, José Antonio | |
| dc.date.accessioned | 2026-01-15T09:39:26Z | |
| dc.date.available | 2026-01-15T09:39:26Z | |
| dc.date.issued | 2021-12-12 | |
| dc.description | Texto completo a traves de ACM: https://dl.acm.org/doi/10.5555/3522802.3522982" ©2021 IEEE | |
| dc.description.abstract | This paper presents a local-path planner for water quality monitoring involving an Autonomous Surface Vehicle (ASV). The planner determines new measuring waypoints based on the information collected so far, and on two gradient-free optimization and contour-detection algorithms. In particular, the optimization algorithm generates the locations where the variable/substance under study must be measured and use them as the waypoints of the external loop of the Guidance, Navigation and Control system of our ASV. Besides, the contour algorithm obtains useful waypoints to determine the water body locations where the variable/substance under study reaches a given value. The paper also analyzes how the approach works via progressive simulations over an ASV carefully modelled with a set of non-linear differential equations. Preliminaryresultssuggestthattheapproachcanbeusefulinreal-worldsingle-ASVwater-qualitymonitoring missions where there is not previous knowledge of the state and location of the variable/substance under study. | |
| dc.description.department | Depto. de Arquitectura de Computadores y Automática | |
| dc.description.faculty | Fac. de Ciencias Físicas | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | European Commission | |
| dc.description.sponsorship | Ministerio de Ciencia e Innovación (España) | |
| dc.description.sponsorship | Agencia Estatal de Investigación (España) | |
| dc.description.status | pub | |
| dc.identifier.citation | Besada-Portas, E., Girón-Sierra, J. M., Jiménez, J., & López-Orozco, J. A. (2021, December). Data-driven exploration of lentic water bodies with ASVS guided by gradient-free optimization/contour detection algorithms. In 2021 Winter Simulation Conference (WSC) (pp. 1-12). IEEE. | |
| dc.identifier.doi | 10.1109/wsc52266.2021.9715455 | |
| dc.identifier.issn | 0891-7736 | |
| dc.identifier.officialurl | https://doi.org/10.1109/wsc52266.2021.9715455 | |
| dc.identifier.relatedurl | https://ieeexplore.ieee.org/document/9715455 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/130299 | |
| dc.language.iso | eng | |
| dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098962-B-C21/ES/MONITORIZACION AUTOMATICA DE CONTAMINANTES EN AGUAS EMBALSADAS UTILIZANDO BIOSENSORES Y VEHICULOS AUTONOMOS DE SUPERFICIE/ | |
| dc.rights.accessRights | embargoed access | |
| dc.subject.cdu | 004.896 | |
| dc.subject.keyword | Analytical models | |
| dc.subject.keyword | Navigation | |
| dc.subject.keyword | Atmospheric measurements | |
| dc.subject.keyword | Water quality | |
| dc.subject.keyword | Differential equations | |
| dc.subject.keyword | Particle measurements | |
| dc.subject.keyword | Mathematical models | |
| dc.subject.ucm | Robótica | |
| dc.subject.unesco | 3311.02 Ingeniería de Control | |
| dc.title | Data-driven exploration of lentic water bodies with ASVs guided by gradient-free optimization/contour detection algorithms | |
| dc.type | conference paper | |
| dc.type.hasVersion | VoR | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 0acc96fe-6132-45c5-ad71-299c9dcb6682 | |
| relation.isAuthorOfPublication | 528ed45e-3f1d-488d-a0e4-0ed88ca2370e | |
| relation.isAuthorOfPublication | bf65781a-9242-4227-b413-adf7c55935e6 | |
| relation.isAuthorOfPublication | 26b95994-f79c-4d7c-8de5-a003d6d2a770 | |
| relation.isAuthorOfPublication.latestForDiscovery | 0acc96fe-6132-45c5-ad71-299c9dcb6682 |

