Glendonite occurrences in the Tremadocian of Baltica: first Early Palaeozoic evidence of massive ikaite precipitation at temperate latitudes
Loading...
Official URL
Full text at PDC
Publication date
2019
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Nature Research
Citation
Abstract
The Tremadocian (Early Ordovician) is currently considered a time span of greenhouse conditions with tropical water surface temperature estimates, interpolated from oxygen isotopes, approaching 40 °C. In the mid-latitude Baltoscandian Basin, conodonts displaying low δ18O values, which suggest high temperatures (>40 °C) in the water column, are in contrast with the discovery of contemporaneous glendonite clusters, a pseudomorph of ikaite (CaCO3·6H2O) traditionally considered as indicator of near-freezing bottom-water conditions. The massive precipitation of this temperature sensitive mineral is associated with transgressive conditions and high organic productivity. As a result, the lower Tremadocian sediments of Baltoscandia apparently contain both “greenhouse” pelagic signals and near-freezing substrate indicators. This paradox points to other primary controlling mechanisms for ikaite precipitation in kerogenous substrates, such as carbonate alkalinity, pH and Mg/Ca ratios, as recently constrained by laboratory experiments. Preservation of “hot” conodonts embedded in kerogenous shales rich in δ18O-depleted glendonites suggests both the onset of sharp thermal stratification patterns in a semi-closed basin and the assumed influence of isotopically depleted freshwater yielded by fluvial systems.