Phase transition in three-dimensional Heisenberg spin glasses with strong random anisotropies through a multi-GPU parallelization
Loading...
Official URL
Full text at PDC
Publication date
2014
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citation
Abstract
We characterize the phase diagram of anisotropic Heisenberg spin glasses, finding both the spin and the chiral glass transition. We remark on the presence of strong finite-size effects in the chiral sector. On the spin glass sector, we find that the universality class is that of Ising spin glasses. Our data are compatible with a unique phase transition for the chiral and spin glass sector. We focus on keeping finite-size effects under control, and we stress that they are important to understand experiments. Thanks to large GPU clusters we have been able to thermalize cubic lattices with up to 643 spins, over a vast range of temperatures (hence, of relaxation times).
Description
© 2014 American Physical Society. We thank J. J. Ruiz Lorenzo and E. Marinari for useful discussions. We were partly supported by MINECO, Spain, through the Research Contract No. FIS2012-35719-C02. M.B.J. was supported by the FPU program (MECD, Spain). The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement No. [247328]. The computations were carried out in the GPU-accelerated clusters Tianh-1A (Tianjin, China) and Minotauro (Barcelona, Spain). The total amount of time devoted to this project was 2.2 × 105 GPU hours in Tianhe 1A and 2.0 × 105 GPU hours in Minotauro. Access to Tianhe 1A was granted through Research Contract No. 287746 by the EU-FP7. The authors thankfully acknowledge the computer resources, technical expertise, and assistance provided by the staff at the National Supercomputing Center-Tianjin and at the Red Española de Supercomputación–Barcelona Supercomputing Center.