Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A new community detection problem based on bipolar fuzzy measures

dc.conference.date2-5 October 2019
dc.conference.placeToledo
dc.conference.title11th European Symposium on Computational Intelligence and Mathematics, ESCIM 2019
dc.contributor.authorGutiérrez García-Pardo, Inmaculada
dc.contributor.authorGómez González, Daniel
dc.contributor.authorCastro Cantalejo, Javier
dc.contributor.authorEspínola Vílchez, María Rosario
dc.date.accessioned2024-09-03T07:29:58Z
dc.date.available2024-09-03T07:29:58Z
dc.date.issued2022
dc.descriptionColección de libros: Studies in Computational Intelligence ((SCI,volume 955))
dc.description.abstractIn social network research, one of the most important analysis is community detection. Fuzzy uncertainty appears clearly when modeling real situations by means of networks. Nevertheless, most of the algorithms used to detect communities in graphs represent them as something crisp. Due to its speed and efficiency, Louvain algorithm is one of the most popular methods used to find clusters in crisp networks. In this study, we propose a modification of it, based on the incorporation of a bipolar fuzzy measure defined over the nodes of the network. Our proposal is based on the use of the Shapley value, which is considered to measure the importance of each node.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipGobierno de España. Secretaría de Estado de Investigacion, Desarrollo e Innovacion
dc.description.statuspub
dc.identifier.citationGutiérrez, Inmaculada, Daniel Gómez, Javier Castro, y Rosa Espínola. «A New Community Detection Problem Based on Bipolar Fuzzy Measures». En Studies in Computational Intelligence, 955:91-99. Springer Science and Business Media Deutschland GmbH, 2022. https://doi.org/10.1007/978-3-030-88817-6_11
dc.identifier.doi10.1007/978-3-030-88817-6_11
dc.identifier.essn1860-9503
dc.identifier.isbn978-3-030-88817-6
dc.identifier.issn1860-949X
dc.identifier.officialurlhttps://doi.org/10.1007/978-3-030-88817-6_11
dc.identifier.relatedurlhttps://link.springer.com/chapter/10.1007/978-3-030-88817-6_11
dc.identifier.urihttps://hdl.handle.net/20.500.14352/107837
dc.language.isoeng
dc.page.final99
dc.page.initial91
dc.relation.projectIDMTM2015-70550-P
dc.relation.projectIDPGC2018096509-B-I00
dc.relation.projectIDTIN2015-66471-P
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsmetadata only access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu316.635
dc.subject.cdu519.2
dc.subject.cdu519.22-7
dc.subject.cdu004.6
dc.subject.keywordBipolar fuzzy clustering
dc.subject.keywordBipolar fuzzy graph
dc.subject.keywordCommunity detection
dc.subject.keywordNetworks
dc.subject.ucmEstadística
dc.subject.ucmRedes
dc.subject.ucmEstadística aplicada
dc.subject.unesco1209 Estadística
dc.subject.unesco1209.03 Análisis de Datos
dc.subject.unesco1203.17 Informática
dc.titleA new community detection problem based on bipolar fuzzy measures
dc.typeconference paper
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication2f4cd183-2dd2-4b4e-8561-9086ff5c0b90
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublicatione556dae6-6552-4157-b98a-904f3f7c9101
relation.isAuthorOfPublication843bc5ed-b523-401d-98ed-6cb00a801c31
relation.isAuthorOfPublication.latestForDiscovery2f4cd183-2dd2-4b4e-8561-9086ff5c0b90

Download