Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Dissipative dynamics of fluid lipid membranes enriched in cholesterol

dc.contributor.authorArriaga, Laura R.
dc.contributor.authorRodríguez García, Ruddi
dc.contributor.authorMoleiro, Lara H.
dc.contributor.authorPrévost, Sylvain
dc.contributor.authorLópez-Montero, Iván
dc.contributor.authorHellweg, Thomas
dc.contributor.authorMonroy Muñoz, Francisco
dc.date.accessioned2023-06-17T23:55:33Z
dc.date.available2023-06-17T23:55:33Z
dc.date.issued2017
dc.descriptionThe research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (ERC grant agreement n° 338133)
dc.description.abstractCholesterol is an intriguing component of fluid lipid membranes: It makes them stiffer but also more fluid. Despite the enormous biological significance of this complex dynamical behavior, which blends aspects of membrane elasticity with viscous friction, their mechanical bases remain however poorly understood. Here, we show that the incorporation of physiologically relevant contents of cholesterol in model fluid membranes produces a fourfold increase in the membrane bending modulus. However, the increase in the compression rigidity that we measure is only twofold; this indicates that cholesterol increases coupling between the two membrane leaflets. In addition, we show that although cholesterol makes each membrane leaflet more fluid, it increases the friction between the membrane leaflets. This dissipative dynamics causes opposite but advantageous effects over different membrane motions: It allows the membrane to rearrange quickly in the lateral dimension, and to simultaneously dissipate out-of-plane stresses through friction between the two membrane leaflets. Moreover, our results provide a clear correlation between coupling and friction of membrane leaflets. Furthermore, we show that these rigid membranes are optimal to resist slow deformations with minimum energy dissipation; their optimized stability might be exploited to design soft technological microsystems with an encoded mechanics, vesicles or capsules for instance, useful beyond classical applications as model biophysical systems.
dc.description.departmentDepto. de Química Física
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/60115
dc.identifier.doi10.1016/j.cis.2017.07.007
dc.identifier.issn0001-8686
dc.identifier.officialurlhttps://doi.org/10.1016/j.cis.2017.07.007
dc.identifier.urihttps://hdl.handle.net/20.500.14352/19026
dc.journal.titleAdvances in Colloid and Interface Science
dc.language.isoeng
dc.page.final520
dc.page.initial514
dc.publisherElsevier
dc.relation.projectIDMITOCHON (338133)
dc.relation.projectIDFIS2012-35723; (RYC-2013-12609)
dc.relation.projectIDNANOBIOSOMA (S2013/MIT-2807)
dc.rights.accessRightsrestricted access
dc.subject.ucmQuímica física (Química)
dc.titleDissipative dynamics of fluid lipid membranes enriched in cholesterol
dc.typejournal article
dc.volume.number247
dspace.entity.typePublication
relation.isAuthorOfPublicationbe319c4d-3f68-44c3-bbfc-a0bb85e27477
relation.isAuthorOfPublication.latestForDiscoverybe319c4d-3f68-44c3-bbfc-a0bb85e27477

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ACIS2017_2.pdf
Size:
777.16 KB
Format:
Adobe Portable Document Format

Collections