Characterizing the strange term in critical size homogenization: Quasilinear equations with a general microscopic boundary condition
dc.contributor.author | Díaz Díaz, Jesús Ildefonso | |
dc.contributor.author | Gómez-Castro, David | |
dc.contributor.author | Podol’skii, Alexander V. | |
dc.contributor.author | Shaposhnikova, Tatiana A. | |
dc.date.accessioned | 2023-06-18T00:12:47Z | |
dc.date.available | 2023-06-18T00:12:47Z | |
dc.date.issued | 2017 | |
dc.description.abstract | The aim of this paper is to consider the asymptotic behavior of boundary value problems in ndimensional domains with periodically placed particles, with a general microscopic boundary condition on the particles and a p-Laplace diffusion operator on the interior, in the case in which the particles are of critical size. We consider the cases in which 1 < p < n, n ≥ 3. In fact, in contrast to previous results in the literature, we formulate the microscopic boundary condition in terms of a Robin type condition, involving a general maximal monotone graph, which also includes the case of microscopic Dirichlet boundary conditions. In this way we unify the treatment of apparently different formulations, which before were considered separately. We characterize the so called “strange term” in the homogenized problem for the case in which the particles are balls of critical size. Moreover, by studying an application in Chemical Engineering, we show that the critically sized particles lead to a more effective homogeneous reaction than noncritically sized particles. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/77494 | |
dc.identifier.doi | 10.1515/anona-2017-0140 | |
dc.identifier.issn | 2191-9496 | |
dc.identifier.officialurl | https://doi.org/10.1515/anona-2017-0140 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/19417 | |
dc.issue.number | 1 | |
dc.journal.title | Advances in Nonlinear Analysis | |
dc.language.iso | eng | |
dc.page.final | 693 | |
dc.page.initial | 679 | |
dc.rights | Atribución 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject.cdu | 517.9 | |
dc.subject.keyword | Homogenization | |
dc.subject.keyword | P-Laplace diffusion | |
dc.subject.keyword | Nonlinear boundary reaction | |
dc.subject.keyword | Noncritical sizes | |
dc.subject.keyword | Maximal monotone graphs | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Characterizing the strange term in critical size homogenization: Quasilinear equations with a general microscopic boundary condition | |
dc.type | journal article | |
dc.volume.number | 8 | |
dcterms.references | [1] H. Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, in: Contributions to Nonlinear Functional Analysis, Academic Press, New York (1971), 101–156. [2] H. Brézis, Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam, 1973. [3] H. Brézis and M. Sibony, Méthodes d’approximation et d’itération pour les opérateurs monotones, Arch. Ration. Mech. Anal. 28 (1968), no. 1, 59–82. [4] D. Cioranescu and F. Murat, A strange term coming from nowhere, in: Topics in the Mathematical Modelling of Composite Materials, Progr. Nonlinear Differential Equations Appl. 31, Birkhäuser, Boston (1997), 45–93. [5] C. Conca, J. I. Díaz, A. Liñán and C. Timofte, Homogenization in chemical reactive flows, Electron. J. Differential Equations (2004) 2004, Paper No. 40. [6] C. Conca and P. Donato, Nonhomogeneous Neumann problems in domains with small holes, RAIRO Modél. Math. Anal. Numér. 22 (1988), no. 4, 561–607. [7] G. Dal Maso and I. V. Skrypnik, A monotonicity approach to nonlinear Dirichlet problems in perforated domains, Adv. Math. Sci. Appl. 11 (2001), no. 2, 721–751. [8] J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries. Vol. I: Elliptic Equations, Res. Notes Math. 106, Pitman, London, 1985. [9] J. I. Díaz, Two problems in homogenization of porous media, Extracta Math. 14 (1999), no. 2, 141–155. [10] J. I. Díaz and D. Gómez-Castro, A mathematical proof in nanocatalysis: Better homogenized results in the diffusion of a chemical reactant through critically small reactive particles, in: Progress in Industrial Mathematics at ECMI 2016, Springer, Cham (2017), to appear. [11] J. I. Díaz, D. Gómez-Castro, A. V. Podol’skii and T. A. Shaposhnikova, Homogenization of the p-Laplace operator with nonlinear boundary condition on critical size particles: Identifying the strange terms for some non smooth and multivalued operators, Dokl. Math. 94 (2016), no. 1, 387–392. [12] J. I. Díaz, D. Gómez-Castro, A. V. Podol’skii and T. A. Shaposhnikova, Homogenization of variational inequalities of Signorini type for the p-Laplacian in perforated domains when p ∈ (1, 2), Dokl. Math. 95 (2017), no. 2, 151–156. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 34ef57af-1f9d-4cf3-85a8-6a4171b23557 | |
relation.isAuthorOfPublication.latestForDiscovery | 34ef57af-1f9d-4cf3-85a8-6a4171b23557 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- ildefonso_diaz_characterizing.pdf
- Size:
- 856.54 KB
- Format:
- Adobe Portable Document Format