Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Characterizing the strange term in critical size homogenization: Quasilinear equations with a general microscopic boundary condition

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorGómez-Castro, David
dc.contributor.authorPodol’skii, Alexander V.
dc.contributor.authorShaposhnikova, Tatiana A.
dc.date.accessioned2023-06-18T00:12:47Z
dc.date.available2023-06-18T00:12:47Z
dc.date.issued2017
dc.description.abstractThe aim of this paper is to consider the asymptotic behavior of boundary value problems in ndimensional domains with periodically placed particles, with a general microscopic boundary condition on the particles and a p-Laplace diffusion operator on the interior, in the case in which the particles are of critical size. We consider the cases in which 1 < p < n, n ≥ 3. In fact, in contrast to previous results in the literature, we formulate the microscopic boundary condition in terms of a Robin type condition, involving a general maximal monotone graph, which also includes the case of microscopic Dirichlet boundary conditions. In this way we unify the treatment of apparently different formulations, which before were considered separately. We characterize the so called “strange term” in the homogenized problem for the case in which the particles are balls of critical size. Moreover, by studying an application in Chemical Engineering, we show that the critically sized particles lead to a more effective homogeneous reaction than noncritically sized particles.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/77494
dc.identifier.doi10.1515/anona-2017-0140
dc.identifier.issn2191-9496
dc.identifier.officialurlhttps://doi.org/10.1515/anona-2017-0140
dc.identifier.urihttps://hdl.handle.net/20.500.14352/19417
dc.issue.number1
dc.journal.titleAdvances in Nonlinear Analysis
dc.language.isoeng
dc.page.final693
dc.page.initial679
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu517.9
dc.subject.keywordHomogenization
dc.subject.keywordP-Laplace diffusion
dc.subject.keywordNonlinear boundary reaction
dc.subject.keywordNoncritical sizes
dc.subject.keywordMaximal monotone graphs
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleCharacterizing the strange term in critical size homogenization: Quasilinear equations with a general microscopic boundary condition
dc.typejournal article
dc.volume.number8
dcterms.references[1] H. Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, in: Contributions to Nonlinear Functional Analysis, Academic Press, New York (1971), 101–156. [2] H. Brézis, Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam, 1973. [3] H. Brézis and M. Sibony, Méthodes d’approximation et d’itération pour les opérateurs monotones, Arch. Ration. Mech. Anal. 28 (1968), no. 1, 59–82. [4] D. Cioranescu and F. Murat, A strange term coming from nowhere, in: Topics in the Mathematical Modelling of Composite Materials, Progr. Nonlinear Differential Equations Appl. 31, Birkhäuser, Boston (1997), 45–93. [5] C. Conca, J. I. Díaz, A. Liñán and C. Timofte, Homogenization in chemical reactive flows, Electron. J. Differential Equations (2004) 2004, Paper No. 40. [6] C. Conca and P. Donato, Nonhomogeneous Neumann problems in domains with small holes, RAIRO Modél. Math. Anal. Numér. 22 (1988), no. 4, 561–607. [7] G. Dal Maso and I. V. Skrypnik, A monotonicity approach to nonlinear Dirichlet problems in perforated domains, Adv. Math. Sci. Appl. 11 (2001), no. 2, 721–751. [8] J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries. Vol. I: Elliptic Equations, Res. Notes Math. 106, Pitman, London, 1985. [9] J. I. Díaz, Two problems in homogenization of porous media, Extracta Math. 14 (1999), no. 2, 141–155. [10] J. I. Díaz and D. Gómez-Castro, A mathematical proof in nanocatalysis: Better homogenized results in the diffusion of a chemical reactant through critically small reactive particles, in: Progress in Industrial Mathematics at ECMI 2016, Springer, Cham (2017), to appear. [11] J. I. Díaz, D. Gómez-Castro, A. V. Podol’skii and T. A. Shaposhnikova, Homogenization of the p-Laplace operator with nonlinear boundary condition on critical size particles: Identifying the strange terms for some non smooth and multivalued operators, Dokl. Math. 94 (2016), no. 1, 387–392. [12] J. I. Díaz, D. Gómez-Castro, A. V. Podol’skii and T. A. Shaposhnikova, Homogenization of variational inequalities of Signorini type for the p-Laplacian in perforated domains when p ∈ (1, 2), Dokl. Math. 95 (2017), no. 2, 151–156.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ildefonso_diaz_characterizing.pdf
Size:
856.54 KB
Format:
Adobe Portable Document Format

Collections