Algebrability of the set of non-convergent Fourier series
dc.contributor.author | Aron, Richard M. | |
dc.contributor.author | Pérez García, David | |
dc.contributor.author | Seoane Sepúlveda, Juan Benigno | |
dc.date.accessioned | 2023-06-20T10:33:24Z | |
dc.date.available | 2023-06-20T10:33:24Z | |
dc.date.issued | 2006 | |
dc.description.abstract | We show that, given a set E subset of T of measure zero, the set of continuous functions whose Fourier series expansion is divergent at any point t is an element of E is dense-algebrable, i.e. there exists an infinite-dimensional, infinitely generated dense subalgebra, of C(T) every non-zero element of which has a Fourier series expansion divergent in E. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20214 | |
dc.identifier.doi | 10.4064/sm175-1-5 | |
dc.identifier.issn | 0039-3223 | |
dc.identifier.officialurl | http://webmail.impan.gov.pl/cgi-bin/sm/pdf?sm175-1-05 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50496 | |
dc.issue.number | 1 | |
dc.journal.title | Studia Mathematica | |
dc.language.iso | spa | |
dc.page.final | 90 | |
dc.page.initial | 83 | |
dc.publisher | Polish Acad Sciencies Inst Mathematics | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | Fourier series | |
dc.subject.keyword | Divergent series | |
dc.subject.keyword | Lineability | |
dc.subject.keyword | Spaceability | |
dc.subject.keyword | Algebrability | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | Algebrability of the set of non-convergent Fourier series | |
dc.type | journal article | |
dc.volume.number | 175 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5edb2da8-669b-42d1-867d-8fe3144eb216 | |
relation.isAuthorOfPublication | e85d6b14-0191-4b04-b29b-9589f34ba898 | |
relation.isAuthorOfPublication.latestForDiscovery | 5edb2da8-669b-42d1-867d-8fe3144eb216 |
Download
Original bundle
1 - 1 of 1