Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Algebrability of the set of non-convergent Fourier series

dc.contributor.authorAron, Richard M.
dc.contributor.authorPérez García, David
dc.contributor.authorSeoane Sepúlveda, Juan Benigno
dc.date.accessioned2023-06-20T10:33:24Z
dc.date.available2023-06-20T10:33:24Z
dc.date.issued2006
dc.description.abstractWe show that, given a set E subset of T of measure zero, the set of continuous functions whose Fourier series expansion is divergent at any point t is an element of E is dense-algebrable, i.e. there exists an infinite-dimensional, infinitely generated dense subalgebra, of C(T) every non-zero element of which has a Fourier series expansion divergent in E.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20214
dc.identifier.doi10.4064/sm175-1-5
dc.identifier.issn0039-3223
dc.identifier.officialurlhttp://webmail.impan.gov.pl/cgi-bin/sm/pdf?sm175-1-05
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50496
dc.issue.number1
dc.journal.titleStudia Mathematica
dc.language.isospa
dc.page.final90
dc.page.initial83
dc.publisherPolish Acad Sciencies Inst Mathematics
dc.rights.accessRightsopen access
dc.subject.cdu517.98
dc.subject.keywordFourier series
dc.subject.keywordDivergent series
dc.subject.keywordLineability
dc.subject.keywordSpaceability
dc.subject.keywordAlgebrability
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleAlgebrability of the set of non-convergent Fourier series
dc.typejournal article
dc.volume.number175
dspace.entity.typePublication
relation.isAuthorOfPublication5edb2da8-669b-42d1-867d-8fe3144eb216
relation.isAuthorOfPublicatione85d6b14-0191-4b04-b29b-9589f34ba898
relation.isAuthorOfPublication.latestForDiscovery5edb2da8-669b-42d1-867d-8fe3144eb216

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
pdf.pdf
Size:
126.93 KB
Format:
Adobe Portable Document Format

Collections