Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Algebrability of the set of non-convergent Fourier series

dc.contributor.authorAron, Richard M.
dc.contributor.authorPérez García, David
dc.contributor.authorSeoane Sepúlveda, Juan Benigno
dc.date.accessioned2023-06-20T10:33:24Z
dc.date.available2023-06-20T10:33:24Z
dc.date.issued2006
dc.description.abstractWe show that, given a set E subset of T of measure zero, the set of continuous functions whose Fourier series expansion is divergent at any point t is an element of E is dense-algebrable, i.e. there exists an infinite-dimensional, infinitely generated dense subalgebra, of C(T) every non-zero element of which has a Fourier series expansion divergent in E.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20214
dc.identifier.doi10.4064/sm175-1-5
dc.identifier.issn0039-3223
dc.identifier.officialurlhttp://webmail.impan.gov.pl/cgi-bin/sm/pdf?sm175-1-05
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50496
dc.issue.number1
dc.journal.titleStudia Mathematica
dc.language.isospa
dc.page.final90
dc.page.initial83
dc.publisherPolish Acad Sciencies Inst Mathematics
dc.rights.accessRightsopen access
dc.subject.cdu517.98
dc.subject.keywordFourier series
dc.subject.keywordDivergent series
dc.subject.keywordLineability
dc.subject.keywordSpaceability
dc.subject.keywordAlgebrability
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleAlgebrability of the set of non-convergent Fourier series
dc.typejournal article
dc.volume.number175
dspace.entity.typePublication
relation.isAuthorOfPublication5edb2da8-669b-42d1-867d-8fe3144eb216
relation.isAuthorOfPublicatione85d6b14-0191-4b04-b29b-9589f34ba898
relation.isAuthorOfPublication.latestForDiscovery5edb2da8-669b-42d1-867d-8fe3144eb216

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
pdf.pdf
Size:
126.93 KB
Format:
Adobe Portable Document Format

Collections