Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Symplectic resolutions, Lefschetz property and formality.

dc.contributor.authorCavalcanti, Gil R.
dc.contributor.authorFernández, Marisa
dc.contributor.authorMuñoz, Vicente
dc.date.accessioned2023-06-20T09:41:31Z
dc.date.available2023-06-20T09:41:31Z
dc.date.issued2008
dc.description.abstractWe introduce a method to resolve a symplectic orbifold (M, omega) into a smooth symplectic manifold ((M) over tilde,(omega) over tilde). Then we study how the formality and the Lefschetz property of ((M) over tilde,(omega) over tilde) are compared with that of (M, omega). We also study the formality of the symplectic blow-up of (M, omega) along symplectic submanifolds disjoint from the orbifold singularities. This allows us to construct the first example of a simply connected compact symplectic manifold of dimension 8 which satisfies the Lefschetz property but is not formal, therefore giving a counter-example to a conjecture of Babenko and Taimanov.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMCyT
dc.description.sponsorshipEPSRC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17084
dc.identifier.doi10.1016/j.aim.2008.01.012
dc.identifier.issn0001-8708
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0001870808000236
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50192
dc.issue.number2
dc.journal.titleAdvances in Mathematics
dc.language.isoeng
dc.page.final599
dc.page.initial576
dc.publisherElsvier
dc.relation.projectIDMTM2004-07090
dc.relation.projectIDMTM2005-08757-C04-02
dc.rights.accessRightsrestricted access
dc.subject.cdu514
dc.subject.keywordSymplectic resolutions
dc.subject.keywordSymplectic blow-ups
dc.subject.keywordLefschetz property
dc.subject.keywordFormality
dc.subject.ucmGeometría
dc.subject.unesco1204 Geometría
dc.titleSymplectic resolutions, Lefschetz property and formality.
dc.typejournal article
dc.volume.number218
dcterms.referencesI.K. Babenko, I.A. Taimanov, On non-formal simply connected symplectic manifolds, Siberian Math. J. 41 (2000)204–217. G.R. Cavalcanti, The Lefschetz property, formality and blowing up in symplectic geometry, Trans. Amer. Math. Soc.359 (2007) 333–348. P. Deligne, P. Griffiths, J. Morgan, D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29(1975)245–274. M. Fernández, V. Muñoz, Formality of Donaldson submanifolds, Math. Z. 250 (2005) 149–175. M. Fernández, V. Muñoz, An 8-dimensional non-formal simply connected symplectic manifold, Ann. of Math. (2),in press. P. Griffiths, J.W. Morgan, Rational Homotopy Theory and Differential Forms, Progr. Math., vol. 16, Birkhäuser Boston, Boston, MA, 1981. S. Halperin, Lectures on minimal models, Mém. Soc. Math. France 230 (1983). H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964) 109–203,205–326. D. McDuff, Examples of symplectic simply connected manifolds with no Kähler structure, J.Differential Geom.20(1984) 267–277. D. McDuff, D. Salamon, Introduction to Symplectic Geometry, second ed., Oxford Math. Monogr., Clarendon,Oxford, 1998. S.A. Merkulov, Formality of canonical symplectic complexes and Frobenius manifolds, Int. Math. Res. Not. 14 (1998) 727–733. T.J. Miller, J. Neisendorfer, Formal and conformal spaces, Illinois. J. Math. 22 (1978) 565–580. K. Niederkrüger, F. Pasquotto, Resolution of symplectic cyclic orbifold singularities, preprint math.SG/0707.4141. D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1978) 269–331. W.P. Thurston, Three-dimensional Geometry and Topology,vol. 1, Princeton Math. Ser., vol. 35, Princeton Univ. Press, Princeton, NJ, 1997. A. Tralle, J. Oprea, Symplectic Manifolds with no Kähler Structure, Lecture Notes in Math., vol. 1661, Springer–Verlag, Berlin, 1997.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VMuñoz12.pdf
Size:
235.97 KB
Format:
Adobe Portable Document Format

Collections