Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

The Aron-Berner extension, Goldstine's theorem and P-continuity

dc.contributor.authorGarcía González, Ricardo
dc.contributor.authorJaramillo Aguado, Jesús Ángel
dc.contributor.authorLlavona, José G.
dc.date.accessioned2023-06-20T00:15:32Z
dc.date.available2023-06-20T00:15:32Z
dc.date.issued2011
dc.description.abstractIn this paper we show that the Aron-Berner type extension of polynomials preserves the P-continuity property. To this end we introduce a new version of Goldstine's Theorem for locally complemented subspaces.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16211
dc.identifier.doi/10.1002/mana.200810120
dc.identifier.issn0025-584X
dc.identifier.officialurlhttp://onlinelibrary.wiley.com/doi/10.1002/mana.200810120/pdf
dc.identifier.relatedurlhttp://www.wiley.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42285
dc.issue.number5-6
dc.journal.titleMathematische Nachrichten
dc.language.isoeng
dc.page.final702
dc.page.initial694
dc.publisherWiley-Blackwell
dc.relation.projectIDMTM2007-6994-C02-02
dc.relation.projectIDMTM2006-03531
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordAron-Berner extension
dc.subject.keywordP-continuity
dc.subject.keywordpolynomials
dc.subject.keywordBanach spaces
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleThe Aron-Berner extension, Goldstine's theorem and P-continuity
dc.typejournal article
dc.volume.number284
dcterms.referencesR. Arens, The adjoint of a bilinear operation, Proc. Am. Math. Soc. 2, 839–848 (1951). R. Aron and P. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. Fr. 106(1), 3–24 (1978). R. Aron, Y. S. Choi, and J. G. Llavona, Estimates by polynomials, Bull. Aust. Math. Soc. 52, 475–486 (1995). R. Aron, P. Galindo, D. García, and M. Maestre, Regularity and algebras of analytic functions in infinite dimensions, Trans. Am. Math. Soc. 348(2), 543–559 (1996). F. Cabello and R. García, The bidual of a tensor product of Banach spaces, Rev. Mat. Iberoam. 21(3), 843–861 (2005). F. Cabello, R. García, and I. Villanueva, Extensions of multilinear operators on Banach spaces, Extr. Math. 15, 291–334 (2000). D. Carando and S. Lassalle, E_ and its relation with vector-valued functions on E, Ark. Mat. 42, 283–300 (2004). A. M. Davie and T. W. Gamelin, A theorem on polynomial-star approximation, Proc. Am. Math. Soc. 106, 351–356 (1989). P. Galindo, D. García, M. Maestre, and J. Mujica, Extensions of multilinear mappings on Banach spaces, Stud. Math. 108, 55–77 (1994). P. Galindo, M. Maestre, and P. Rueda, Biduality in spaces of holomorphic functions, Math. Scand. 86, 5–16 (2000). M. González, J. M. Gutiérrez, and J. G. Llavona, Polynomial continuity on l1 , Proc. Am. Math. Soc. 125(5), 1349–1353 (1997) J. M. Gutiérrez and J. G. Llavona, Polynomially continuous operators, Isr. J. Math. 102, 179–183 (1997). P. Hajek and J. G. Llavona, P-continuity on classical Banach spaces, Proc. Am. Math. Soc. 128(3), 827–830 (2000). W. B. Johnson, Extensions of c0 , Positivity 1, 55–74 (1997). N. J. Kalton, Locally complemented subspaces and Lp -spaces for 0 < p < 1, Math. Nachr. 115, 71–97 (1984). J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Ergebnisse der Mathematik und ihrer Grenzgebiete Band 92 (Springer-Verlag, Berl´ın, 1977). M. Lindstr¨om and R. Ryan, Applications of ultraproducts to infinite dimensional holomorphy, Math. Scand. 71, 229–242 (1992). J. G. Llavona, Approximation of Continuously Differentiable Functions, North-Holland Mathematics Studies Vol. 130 (North-Holland, Amsterdam, New York, 1986). J. G. Llavona and L. A.Moraes, The Aron-Berner extension for polynomials defined in the dual of a Banach space, Publ. RIMS, Kyoto Univ. 40, 221–230 (2004). J. Mujica, Complex Analysis in Banach Spaces, North-Holland Mathematics Studies Vol. 120 (North-Holland, Amsterdam, 1986). O. Nicodemi, Homomorphisms of Algebras of Germs of Holomorphic Functions, in: Proceedings of the Symposium on Functional Analysis, Holomorphy and Approximation Theory held at the Federal University of Rio de Janeiro, Rio de Janeiro 1978, Lecture Notes in Mathematics Vol. 843 (Springer, Berlin-New York, 1981), pp. 534–546. I. Zalduendo, A canonical extension for analytic functions on Banach spaces, Trans. Am. Math. Soc. 320, 747–763 (1990).
dspace.entity.typePublication
relation.isAuthorOfPublication8b6e753b-df15-44ff-8042-74de90b4e3e9
relation.isAuthorOfPublication.latestForDiscovery8b6e753b-df15-44ff-8042-74de90b4e3e9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Jaramillo03.pdf
Size:
113.01 KB
Format:
Adobe Portable Document Format

Collections