A characterization of K-analyticity of groups of continuous homomorphisms
dc.contributor.author | Kąkol, Jerzy | |
dc.contributor.author | Martín Peinador, Elena | |
dc.contributor.author | Moll, Santiago | |
dc.date.accessioned | 2023-06-20T10:35:18Z | |
dc.date.available | 2023-06-20T10:35:18Z | |
dc.date.issued | 2008 | |
dc.description.abstract | For an abelian locally compact group X let X^p be the group of continuous homomorphisms from X into the unit circle T of the complex plane endowed with the pointwise convergence topology. It is proved that X is metrizable iff X^p is K-analytic iff X endowed with its Bohr topology σ(X,X^) has countable tightness. Using this result, we establish a large class of topological groups with countable tightness which are not sequential, so neither Fréchet-Urysohn | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Spanish Ministery of Education and Science | |
dc.description.sponsorship | European Community (Feder projects) | |
dc.description.sponsorship | Ministry of Science and Higher Education, Poland | |
dc.description.sponsorship | Proyectos de Investigación Santander-Complutense | |
dc.description.sponsorship | Primeros Proyectos de Investigacióon UPV PAID-06-06 | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/21631 | |
dc.identifier.issn | 1405-213X | |
dc.identifier.officialurl | http://sociedadmatematicamexicana.org.mx/doc/pdf/14-1-3.pdf | |
dc.identifier.relatedurl | http://sociedadmatematicamexicana.org.mx | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50675 | |
dc.issue.number | 1 | |
dc.journal.title | Boletín de la Sociedad Matemática Mexicana | |
dc.language.iso | eng | |
dc.page.final | 19 | |
dc.page.initial | 15 | |
dc.publisher | Sociedad Matemática Mexicana | |
dc.relation.projectID | MTM 2005-01182 | |
dc.relation.projectID | MTM 2006-03036 | |
dc.relation.projectID | Grant no. N 201 2740 33 | |
dc.relation.projectID | PR 27/05-14039 | |
dc.relation.projectID | Grant no. 20070317 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.1 | |
dc.subject.cdu | 512.546 | |
dc.subject.keyword | Locally compact groups | |
dc.subject.keyword | compact groups | |
dc.subject.keyword | angelic spaces | |
dc.subject.keyword | Lindelöf spaces. | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | A characterization of K-analyticity of groups of continuous homomorphisms | |
dc.type | journal article | |
dc.volume.number | 14 | |
dcterms.references | L. Aussenhofer, Contributions to the duality of abelian topological groups and to the theory of nuclear groups, Dissert. Math. 384. Warszawa 1999. A. V. Arkhangel'skii, Topological function spaces, Math. and its Appl. Kluwer (1992). W. Banaszczyk, Additive Subgroups of Topological Vector Spaces, Springer Verlag LNM, 1446 (1991). J. Calbrix, Espaces Kσ et espaces des applicacions continues, Bull. Soc. Math. France 113, (1985), 183-203. M. J. Chasco, Pontryagin duality for metrizable groups, Arch. Math. 70, (1998), 22-28. M. J. Chasco, E. Martín-Peinador, V. Tarieladze, A class of angelic sequential non- Fréchet-Urysohn topological groups, Topol. Appl. 154, (2007), 741-748. J. P. R. Christensen, Topology and Borel structure, North-Holland Math. Studies 10, (1974). J. Cleary, S. A. Morris, Topologies on locally compact groups, Bull. Australian Math. Soc. 38 (1988), 105-111. H. H. Corson, The weak topology of a Banach space, Trans. Amer. Math.Soc. 101 (1961), 1-15. E. Hewitt, K. A. Ross, Abstract Harmonic Analysis I, Springer, Berlin, New York, 1979. K. H. Hofmann, S. A. Morris, The structure of compact groups, Studies in Math. 25, (1998). J. Kąkol, M. López Pellicer, E. Martín-Peinador and V. Tarieladze, Lindelöf spaces C(X) over topological groups, Forum Math. 20 (2008), 201-212. R. A. McCoy, I. Ntantu, Topological Properties of Spaces of Continuous Functions, Lecture Notes in Math. 1988. S. A. Morris, Pontryagin duality and the structure of locally compact abelian groups, London Math. Soc. Lecture Note Series 29, (1977). E. Martín-Peinador, V. Tarieladze, Aproperty of Dunford-Pettis type in topological groups, Proc. Amer. Math. Soc. 132 (2004), 1827-1834. M. Talagrand, Espaces de Banach faiblement K-analytiques, Ann. Math. 119 (1979), 407-438 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0074400c-5caa-43fa-9c45-61c4b6f02093 | |
relation.isAuthorOfPublication.latestForDiscovery | 0074400c-5caa-43fa-9c45-61c4b6f02093 |
Download
Original bundle
1 - 1 of 1