Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A characterization of K-analyticity of groups of continuous homomorphisms

dc.contributor.authorKąkol, Jerzy
dc.contributor.authorMartín Peinador, Elena
dc.contributor.authorMoll, Santiago
dc.date.accessioned2023-06-20T10:35:18Z
dc.date.available2023-06-20T10:35:18Z
dc.date.issued2008
dc.description.abstractFor an abelian locally compact group X let X^p be the group of continuous homomorphisms from X into the unit circle T of the complex plane endowed with the pointwise convergence topology. It is proved that X is metrizable iff X^p is K-analytic iff X endowed with its Bohr topology σ(X,X^) has countable tightness. Using this result, we establish a large class of topological groups with countable tightness which are not sequential, so neither Fréchet-Urysohn
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministery of Education and Science
dc.description.sponsorshipEuropean Community (Feder projects)
dc.description.sponsorshipMinistry of Science and Higher Education, Poland
dc.description.sponsorshipProyectos de Investigación Santander-Complutense
dc.description.sponsorshipPrimeros Proyectos de Investigacióon UPV PAID-06-06
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21631
dc.identifier.issn1405-213X
dc.identifier.officialurlhttp://sociedadmatematicamexicana.org.mx/doc/pdf/14-1-3.pdf
dc.identifier.relatedurlhttp://sociedadmatematicamexicana.org.mx
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50675
dc.issue.number1
dc.journal.titleBoletín de la Sociedad Matemática Mexicana
dc.language.isoeng
dc.page.final19
dc.page.initial15
dc.publisherSociedad Matemática Mexicana
dc.relation.projectIDMTM 2005-01182
dc.relation.projectIDMTM 2006-03036
dc.relation.projectIDGrant no. N 201 2740 33
dc.relation.projectIDPR 27/05-14039
dc.relation.projectIDGrant no. 20070317
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.cdu512.546
dc.subject.keywordLocally compact groups
dc.subject.keywordcompact groups
dc.subject.keywordangelic spaces
dc.subject.keywordLindelöf spaces.
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleA characterization of K-analyticity of groups of continuous homomorphisms
dc.typejournal article
dc.volume.number14
dcterms.referencesL. Aussenhofer, Contributions to the duality of abelian topological groups and to the theory of nuclear groups, Dissert. Math. 384. Warszawa 1999. A. V. Arkhangel'skii, Topological function spaces, Math. and its Appl. Kluwer (1992). W. Banaszczyk, Additive Subgroups of Topological Vector Spaces, Springer Verlag LNM, 1446 (1991). J. Calbrix, Espaces Kσ et espaces des applicacions continues, Bull. Soc. Math. France 113, (1985), 183-203. M. J. Chasco, Pontryagin duality for metrizable groups, Arch. Math. 70, (1998), 22-28. M. J. Chasco, E. Martín-Peinador, V. Tarieladze, A class of angelic sequential non- Fréchet-Urysohn topological groups, Topol. Appl. 154, (2007), 741-748. J. P. R. Christensen, Topology and Borel structure, North-Holland Math. Studies 10, (1974). J. Cleary, S. A. Morris, Topologies on locally compact groups, Bull. Australian Math. Soc. 38 (1988), 105-111. H. H. Corson, The weak topology of a Banach space, Trans. Amer. Math.Soc. 101 (1961), 1-15. E. Hewitt, K. A. Ross, Abstract Harmonic Analysis I, Springer, Berlin, New York, 1979. K. H. Hofmann, S. A. Morris, The structure of compact groups, Studies in Math. 25, (1998). J. Kąkol, M. López Pellicer, E. Martín-Peinador and V. Tarieladze, Lindelöf spaces C(X) over topological groups, Forum Math. 20 (2008), 201-212. R. A. McCoy, I. Ntantu, Topological Properties of Spaces of Continuous Functions, Lecture Notes in Math. 1988. S. A. Morris, Pontryagin duality and the structure of locally compact abelian groups, London Math. Soc. Lecture Note Series 29, (1977). E. Martín-Peinador, V. Tarieladze, Aproperty of Dunford-Pettis type in topological groups, Proc. Amer. Math. Soc. 132 (2004), 1827-1834. M. Talagrand, Espaces de Banach faiblement K-analytiques, Ann. Math. 119 (1979), 407-438
dspace.entity.typePublication
relation.isAuthorOfPublication0074400c-5caa-43fa-9c45-61c4b6f02093
relation.isAuthorOfPublication.latestForDiscovery0074400c-5caa-43fa-9c45-61c4b6f02093

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MPeinador102.pdf
Size:
109.81 KB
Format:
Adobe Portable Document Format

Collections