Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Classification of rational unicuspidal projective curves whose singularities have one Puiseux pair

dc.book.titleReal and complex singularities
dc.contributor.authorFernández de Bobadilla de Olarzábal, Javier José
dc.contributor.authorLuengo Velasco, Ignacio
dc.contributor.authorMelle Hernández, Alejandro
dc.contributor.authorNémethi, A.
dc.contributor.editorBrasselet, J.P.
dc.contributor.editorRuas, Mas
dc.date.accessioned2023-06-20T13:38:22Z
dc.date.available2023-06-20T13:38:22Z
dc.date.issued2007
dc.descriptionConference: 8th Workshop on Real and Complex Singularities Location: Luminy, France Date: Jul. 19-23, 2004
dc.description.abstractIt is a very old and interesting open problem to characterize those collections of embedded topological types of local plane curve singularities which may appear as singularities of a projective plane curve C of degree d. The goal of the present article is to give a complete (topological) classification of those cases when C is rational and it has a unique singularity which is locally irreducible (i.e., C is unicuspidal) with one Puiseux pair.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipNetherlands Organization for Scientific Research (NWO)
dc.description.sponsorshipNSF
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16589
dc.identifier.doi10.1007/978-3-7643-7776-2_4
dc.identifier.isbn3-7643-7775-5
dc.identifier.officialurlhttp://www.springerlink.com/content/rr01708165063370/
dc.identifier.relatedurlhttp://www.springerlink.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53147
dc.language.isoeng
dc.page.final45
dc.page.initial31
dc.page.total11
dc.publication.placeBirkhauser Boston, 675 Massachusetts Ave, Cambridge, Ma 02139-2333 Usa
dc.publisherBirkhauser Boston
dc.relation.ispartofseriesTrends in Mathematics
dc.relation.projectIDBFM2001-1488-C02-01
dc.relation.projectIDDMS-0304759
dc.rights.accessRightsopen access
dc.subject.cdu512.7
dc.subject.keywordCuspidal rational plane curves
dc.subject.keywordLogarithmic Kodaira dimension
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleClassification of rational unicuspidal projective curves whose singularities have one Puiseux pair
dc.typebook part
dcterms.referencesFernández de Bobadilla J., Luengo I., Melle-Hernández A., Némethi A.: On rational cuspidal projective plane curves, preprint at arXiv:math.AG/0410611. Dimca, A.: Singularities and Topology of Hypersurfaces, Universitext, Springer-Verlag, New York, 1992. Fujita, T.: On the topology of non-complete algeraic surfaces, J. Fac. Sci. Univ. Tokyo (Ser1A), 29 (1982), 503-566. Kashiwara, H.: Fonctions rationelles de type (0,1) sur le plan projectif complexe, Osaka J. Math., 24 (1987), 521-577. Namba, M.: Geometry of projective algebraic curves. Monographs and Textbooks in Pure and Applied Mathematics, 88 Marcel Dekker, Inc., New York, 1984. Orevkov, S. Yu.: On rational cuspidal curves, I. Sharp estimate for degree via multiplicities, Math. Ann. 324 (2002), 657-673. Matsuoka, T. and Sakai, F.: The degree of of rational cuspidal curves, Math. Ann., 285 (1989), 233-247. Tono, K.: On rational unicuspidal plane curves with logarithmic Kodaira dimension one, preprint. Tsunoda, Sh.: The complements of projective plane curves, RIMS-Kôkyûroku, 446 (1981), 48-56. Vajda, S.: Fibonacci and Lucas numbers, and the Golden Section: Theory and Applications, Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press New York, 1989. Varchenko, A.N.: On the change of discrete characteristics of critical points of functions under deformations, Uspekhi Mat. Nauk, 38:5 (1985), 126-127. Varchenko, A. N. : Asymptotics of integrals and Hodge structures.Science rewievs:current problems in mathematics 1983. 22, 130-166; J. Sov. Math. 27 (1984). Wall, C.T.C.: Singular Points of Plane Curves, London Math. Soc. Student Texts 63, Cambridge University Press, 2004. Yoshihara, Y.: Rational curves with one cusp (in Japanese), Sugaku, 40 (1988), 269–271.
dspace.entity.typePublication
relation.isAuthorOfPublication2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce
relation.isAuthorOfPublicationc5f952f6-669f-4e3d-abc8-76d6ac56119b
relation.isAuthorOfPublication.latestForDiscovery2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Luengo07.pdf
Size:
160.6 KB
Format:
Adobe Portable Document Format