Quantum polarization for three-dimensional fields via Stokes operators

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
We study the polarization properties of three-dimensional quantum light fields by using the Stokes operators. We modify the standard definition of degree of polarization in order to encompass polarization properties in the quantum domain. We show that the states with the largest degree of polarization and least polarization fluctuations are the SU(3) coherent states. We show that the standard quadrature coherent states are Poissonian superpositions of SU(3) coherent states. We examine the polarization properties of some other relevant field states.
©2005 The American Physical Society. I thank Professor J. J. Gil for valuable comments and suggestions. This work has been supported by Project No. FIS2004-01814 of the Spanish Dirección General de Investigación del Ministerio de Educación y Ciencia.
[1] The Physics of Quantum Information, edited by D. Bouwmeester, A. Ekert, and A. Zeilinger (Sringer, Berlin, 2000); H. Paul, Introduction to Quantum Optics (Cambridge University Press, Cambridge, England, 2004). [2] A. Luis and L. L. Sánchez-Soto, in Progress in Optics, edited by E. Wolf (Elsevier, Amsterdam, 2000), Vol. 41, p. 421. [3] J. Pollet, O. Méplan, and C. Gignoux, J. Phys. A 28, 7287 (1995). [4] J. J. Gil, J. M. Correas, P. A. Melero, and C. Ferreira sunpublishedd; J. J. Gil, J. M. Correas, C. Ferreira, I. San José, P. A. Melero, and J. Delso (unpublished). [5] J. C. Samson and J. V. Olson, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 40, 137 (1981). [6] Ch. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, New York, 1998). [7] T. Carozzi, R. Karlsson, and J. Bergman, Phys. Rev. E 61, 2024 (2000). [8] T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002). [9] M. R. Dennis, J. Opt. A, Pure Appl. Opt. 6, S26 (2004); e-print physics/0309019. [10] S. G. Schirmer, T. Zhang, and J. V. Leavy, J. Phys. A 37, 1389 (2004). [11] R. D. Mota, M. A. Xicoténcatl, and V. D. Granados, J. Phys. A 37, 2835 (2004). [12] A. P. Alodjants and S. M. Arakelian, J. Mod. Opt. 46, 475 (1999). [13] R. Delbourgo, J. Phys. A 10, 1837 (1977). [14] K. Nemoto, J. Phys. A 33, 3493 (2000); K. Nemoto and B. C. Sanders, ibid. 34, 2051 (2001). [15] P. H. Moravek and D. W. Joseph, J. Math. Phys. 4, 1363 (1963). [16] F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys. Rev. A 6, 2211 (1972). [17] P. W. Atkins and J. C. Dobson, Proc. R. Soc. London, Ser. A 321, 321 (1971); A. Luis and J. Peøina, Phys. Rev. A 53, 1886 (1996). [18] P. Vahimaa and J. Tervo, J. Opt. A, Pure Appl. Opt. 6, S41 (2004). [19] A. Luis, Phys. Rev. A 66, 013806 (2002); Opt. Commun. 216, 165 (2003); Phys. Rev. A 69, 023803 (2004).