Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Perturbed black holes in Einstein-dilaton-Gauss-Bonnet gravity: stability, ringdown, and gravitational-wave emission

dc.contributor.authorBlázquez Salcedo, José Luis
dc.contributor.authorMacedo, Caio F.B.
dc.contributor.authorCardoso, Vitor
dc.contributor.authorFerrari, Valeria
dc.contributor.authorGualtieri, Leonardo
dc.contributor.authorKhoo, Fech Scen
dc.contributor.authorKunz, Jutta
dc.contributor.authorPani, Paolo
dc.date.accessioned2024-02-12T15:44:47Z
dc.date.available2024-02-12T15:44:47Z
dc.date.issued2016-11-10
dc.description.abstractGravitational waves emitted by distorted black holes-such as those arising from the coalescence of two neutron stars or black holes-carry not only information about the corresponding spacetime but also about the underlying theory of gravity. Although general relativity remains the simplest, most elegant, and viable theory of gravitation, there are generic and robust arguments indicating that it is not the ultimate description of the gravitational universe. Here, we focus on a particularly appealing extension of general relativity, which corrects Einstein's theory through the addition of terms which are second order in curvature: the topological Gauss-Bonnet invariant coupled to a dilaton. We study gravitational-wave emission from black holes in this theory and (i) find strong evidence that black holes are linearly (mode) stable against both axial and polar perturbations, (ii) discuss how the quasinormal modes of black holes can be excited during collisions involving black holes, and finally (iii) show that future ringdown detections with a large signal-to-noise ratio would improve current constraints on the coupling parameter of the theory.eng
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea
dc.description.sponsorshipConselho Nacional de Desenvolvimento Cientifico e Tecnologico
dc.description.sponsorshipGerman Research Foundation
dc.description.sponsorshipGovernment of Canada through Industry Canada
dc.description.sponsorshipProvince of Ontario through the Ministry of Economic Development and Innovation
dc.description.sponsorshipFundação para a Ciência e a Tecnologia (Portugal)
dc.description.statuspub
dc.identifier.citationBlázquez-Salcedo, Jose Luis, et al. «Perturbed Black Holes in Einstein-Dilaton-Gauss-Bonnet Gravity: Stability, Ringdown, and Gravitational-Wave Emission». Physical Review D, vol. 94, n.o 10, noviembre de 2016, p. 104024. DOI.org (Crossref), https://doi.org/10.1103/PhysRevD.94.104024.
dc.identifier.doi10.1103/PhysRevD.94.104024
dc.identifier.essn2470-0029
dc.identifier.issn2470-0010
dc.identifier.officialurlhttps://doi.org/10.1103/PhysRevD.94.104024
dc.identifier.urihttps://hdl.handle.net/20.500.14352/101302
dc.journal.titlePhysical Review D
dc.language.isoeng
dc.page.final104024-15
dc.page.initial104024-1
dc.publisherAmerican Physical Society.
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/646597/EU
dc.relation.projectIDinfo:eu-repo/grantAgreement/232804/2014-1
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/606096/EU
dc.relation.projectIDinfo:eu-repo/grantAgreement/IF/00293/2013
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/690904/EU
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu53
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titlePerturbed black holes in Einstein-dilaton-Gauss-Bonnet gravity: stability, ringdown, and gravitational-wave emission
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number94
dspace.entity.typePublication
relation.isAuthorOfPublication2a6d99a8-5cf7-4359-b1e1-b96adfb2fb3f
relation.isAuthorOfPublication.latestForDiscovery2a6d99a8-5cf7-4359-b1e1-b96adfb2fb3f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevD.94.104024.pdf
Size:
420.77 KB
Format:
Adobe Portable Document Format

Collections