Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Perturbation of Analytic Semigroups in Scales of Banach Spaces and Applications to Linear Parabolic Equations with Low Regularity Data

dc.contributor.authorRodríguez Bernal, Aníbal
dc.date.accessioned2023-06-20T03:58:40Z
dc.date.available2023-06-20T03:58:40Z
dc.date.issued2011
dc.description.abstractWe study linear perturbations of analytic semigroups defined on a scale of Banach spaces. Fitting the action of the linear perturbation between two spaces of the scale determines the spaces of existence and regularity of solutions for the perturbed semigroup, within the original scale. Also continuity of the resulting perturbed semigroup with respect to the perturbation is analyzed. As the main tools we exploit the smoothing of the original semigroup on the scale and the variation of constants formula. These general results are applied to several situations for linear partial differential equations of parabolic type. The main attention is set on low regularity perturbations of linear diffusion equations in either bounded or unbounded domains. Different scales of spaces are considered such as Lebesgue or Bessel spaces. However, the application of the abstract results are not limited to such examples and many other situatons can be considered.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipUCM-CAM
dc.description.sponsorshipGrupo de Investigacion CADEDIF
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33294
dc.identifier.issn2254-3902
dc.identifier.relatedurlhttp://link.springer.com/journal/40324
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44754
dc.journal.titleSEMA Journal
dc.language.isoeng
dc.page.final54
dc.page.initial3
dc.publisherSpringer
dc.relation.projectIDMTM2006-08262
dc.relation.projectIDMTM2009-07540
dc.relation.projectIDCCG07-UCM/ESP-2393
dc.relation.projectIDPHB2006-003PC Spain
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titlePerturbation of Analytic Semigroups in Scales of Banach Spaces and Applications to Linear Parabolic Equations with Low Regularity Data
dc.typejournal article
dc.volume.number53
dcterms.referencesR.A. Adams. Sobolev Spaces. Academic Press, Boston, 1978. H. Amann. Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In Function spaces, differential operators and nonlinear analysis(Friedrichroda, 1992), volume 133 of Teubner-Texte Math., pages 9–126. Teubner, Stuttgart, 1993. H. Amann. Linear and quasilinear parabolic problems. Vol. I, volume 89 of Monographs in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1995. Abstract linear theory. J. M. Arrieta, A. N. Carvalho, and G. Lozada-Cruz. Dynamics in dumbbell domains. II. The limiting problem. J. Differential Equations, 247(1):174–202, 2009. J.M. Arrieta, J. W. Cholewa, T. Dlotko, and A. Rodríguez-Bernal. Linear parabolic equations in locally uniform spaces. Math. Models Methods Appl. Sci., 14(2):253–293, 2004. J.M. Arrieta, J.W. Cholewa, T. Dlotko, and A. Rodíguez-Bernal. Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains. Nonlinear Anal., 56(4):515–554, 2004. J. Bergh and J. Lofström. Interpolation spaces. An introduction. Springer-Verlag, Berlin, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223. T. Cazenave and A. Haraux. Introduction aux problemes d’evolution semi-lineaires . Ellipses, 1990. D. Daners. Heat kernel estimates for operators with boundary conditions. Math. Nachr., 217:13–41, 2000. A. Friedman. Partial differential equations. Holt, Rienehart, Winston, 1969. D. Henry. Geometric theory of semilinear parabolic equations, volume 840 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1981. A. Lunardi. Analytic semigroups and optimal regularity in parabolic problems. Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Verlag, Basel, 1995. N. Okazawa. A generation theorem for semigroups of growth order α. Tohoku Math. J. (2), 26:39–51, 1974. H. Triebel. Interpolation theory, function spaces, differential operators. Johann Ambrosius Barth, Heidelberg, second edition, 1995.
dspace.entity.typePublication
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublication.latestForDiscoveryfb7ac82c-5148-4dd1-b893-d8f8612a1b08

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RodBernal106.pdf
Size:
612.74 KB
Format:
Adobe Portable Document Format

Collections