Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Artificial Intelligence for Classifying the Relationship between Impacted Third Molar and Mandibular Canal on Panoramic Radiographs

dc.contributor.authorLo Casto, Antonio
dc.contributor.authorSpartivento, Giacomo
dc.contributor.authorBenfante, Viviana
dc.contributor.authorDi Raimondo, Riccardo
dc.contributor.authorAli, Muhammad
dc.contributor.authorDI Raimondo, Domenico
dc.contributor.authorTuttolomondo, Antonino
dc.contributor.authorStefano, Alessandro
dc.contributor.authorYezzi, Anthony
dc.contributor.authorComelli, Albert
dc.contributor.editorEdet Ekpenyong, Andrew
dc.date.accessioned2024-06-14T14:45:30Z
dc.date.available2024-06-14T14:45:30Z
dc.date.issued2023-06-26
dc.description2023 Descuento MDPI
dc.description.abstractThe purpose of this investigation was to evaluate the diagnostic performance of two convolutional neural networks (CNNs), namely ResNet-152 and VGG-19, in analyzing, on panoramic images, the rapport that exists between the lower third molar (MM3) and the mandibular canal (MC), and to compare this performance with that of an inexperienced observer (a sixth year dental student). Utilizing the k-fold cross-validation technique, 142 MM3 images, cropped from 83 panoramic images, were split into 80% as training and validation data and 20% as test data. They were subsequently labeled by an experienced radiologist as the gold standard. In order to compare the diagnostic capabilities of CNN algorithms and the inexperienced observer, the diagnostic accuracy, sensitivity, specificity, and positive predictive value (PPV) were determined. ResNet-152 achieved a mean sensitivity, specificity, PPV, and accuracy, of 84.09%, 94.11%, 92.11%, and 88.86%, respectively. VGG-19 achieved 71.82%, 93.33%, 92.26%, and 85.28% regarding the aforementioned characteristics. The dental student’s diagnostic performance was respectively 69.60%, 53.00%, 64.85%, and 62.53%. This work demonstrated the potential use of deep CNN architecture for the identification and evaluation of the contact between MM3 and MC in panoramic pictures. In addition, CNNs could be a useful tool to assist inexperienced observers in more accurately identifying contact relationships between MM3 and MC on panoramic images.eng
dc.description.departmentDepto. de Odontología Conservadora y Prótesis
dc.description.facultyFac. de Odontología
dc.description.fundingtypeDescuento UCM
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationLo Casto A, Spartivento G, Benfante V, Di Raimondo R, Ali M, Di Raimondo D, et al. Artificial Intelligence for Classifying the Relationship between Impacted Third Molar and Mandibular Canal on Panoramic Radiographs. Life 2023;13:1441. https://doi.org/10.3390/life13071441.
dc.identifier.doi10.3390/life13071441
dc.identifier.officialurlhttps://doi.org/10.3390/life13071441
dc.identifier.relatedurlhttps://www.mdpi.com/2075-1729/13/7/1441
dc.identifier.urihttps://hdl.handle.net/20.500.14352/104962
dc.issue.number7
dc.journal.titleLife
dc.language.isoeng
dc.page.final1450
dc.page.initial1441
dc.publisherMDPI
dc.rightsATTRIBUTION 4.0 INTERNATIONAL
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.cdu616.314
dc.subject.keywordContact relationship
dc.subject.keywordConvolutional neural network
dc.subject.keywordInferior alveolar nerve
dc.subject.keywordMandibular third molar
dc.subject.keywordPanoramic radiograph
dc.subject.keywordResNet-152
dc.subject.keywordVGG-19
dc.subject.ucmCiencias Biomédicas
dc.subject.unesco32 Ciencias Médicas
dc.titleArtificial Intelligence for Classifying the Relationship between Impacted Third Molar and Mandibular Canal on Panoramic Radiographsen
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number13
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Life_13.pdf
Size:
858.8 KB
Format:
Adobe Portable Document Format

Collections