Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Spectral statistics in noninteracting many-particle systems

dc.contributor.authorRelaño Pérez, Armando
dc.contributor.authorMuñoz Muñoz, Laura
dc.contributor.authorFaleiro, E.
dc.contributor.authorMolina, R. A.
dc.contributor.authorRetamosa Granado, Joaquín
dc.date.accessioned2023-06-20T10:49:05Z
dc.date.available2023-06-20T10:49:05Z
dc.date.issued2006-03
dc.description© 2006 The American Physical Society. We are particularly indebted to P. A. Mello for enlightening discussions. We also thank K. Wood for his help with this manuscript. This work is supported in part by Spanish Government Grants No. BFM2003-04147 and No. FTN2003-08337-C04-04.
dc.description.abstractIt is widely accepted that the statistical properties of energy level spectra provide an essential characterization of quantum chaos. Indeed, the spectral fluctuations of many different systems like quantum billiards, atoms, or atomic nuclei have been studied. However, noninteracting many-body systems have received little attention, since it is assumed that they must exhibit Poisson-like fluctuations. Apart from a heuristic argument of Bloch, there are neither systematic numerical calculations nor a rigorous derivation of this fact. Here we present a rigorous study of the spectral fluctuations of noninteracting identical particles moving freely in a mean field emphasizing the evolution with the number of particles N as well as with the energy. Our results are conclusive. For N >= 2 the spectra of these systems exhibit Poisson fluctuations provided that we consider sufficiently high excitation energies. Nevertheless, when the mean field is chaotic there exists a critical energy scale L-c; beyond this scale, the fluctuations deviate from the Poisson statistics as a reminiscence of the statistical properties of the mean field.eng
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipGobierno de España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27718
dc.identifier.citationMuñoz L, Faleiro E, Molina R A, Relaño A and Retamosa J 2006 Spectral statistics in noninteracting many-particle systems Phys. Rev. E 73 036202
dc.identifier.doi10.1103/PhysRevE.73.036202
dc.identifier.issn1539-3755
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevE.73.036202
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51278
dc.issue.number3
dc.journal.titlePhysical Review E
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordQuantum Integrability
dc.subject.keywordLevel Spacings
dc.subject.keywordFluctuations
dc.subject.keywordEnsembles
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleSpectral statistics in noninteracting many-particle systems
dc.typejournal article
dc.volume.number73
dcterms.references[1] H.-J. Stöckmann, Quantum Chaos (Cambridge University Press, Cambridge, UK, 1999). [2] M. V. Berry and M. Tabor, Proc. R. Soc. London, Ser. A 356, 375 (1977). [3] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52, 1 (1984). [4] G. Casati, F. Valz-Gris, and I. Guarneri, Lett. Nuovo Cimento Soc. Ital. Fis. 28, 279 (1980). [5] C. Bloch, in Physique Nucléaire, edited by C. DeWitt and V. Gillet (Gordon and Breach, New York, 1969), p. 303. [6] V. K. B. Kota, Phys. Rep. 347, 223 (2001). [7] H. A. Weidenmüller, Phys. Rev. A 48, 1819 (1993). [8] J. Sakhr and N. D. Whelan, Phys. Rev. E 67, 066213 (2003). [9] G. Tanner, K. Richter, and J.-M. Rost, Rev. Mod. Phys. 72, 497 (2000). [10] J. Sakhr and N. D. Whelan, Phys. Rev. A 62, 042109 (2000). [11] T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M. Wong, Rev. Mod. Phys. 53, 385 (1981). [12] M. Srednicki, Phys. Rev. E 66, 046138 (2002). [13] L. Benet, T. Rupp, and H. A. Weidenmüller, Ann. Phys. (N.Y.) 292, 67 (2001). [14] J. B. French and S. S. M. Wong, Phys. Lett. 33B, 449 (1970). [16] St. Weigert, Physica D 56, 107 (1992). [17] S. Weigert and G. Muller, Chaos, Solitons, and Fractals 5, 1419 (1995). [18] W. M. Zhang and D. H. Feng, Phys. Rep. 252, 1 (1995). [19] A. Relaño, J. Dukelsky, J. M. G. Gómez, and J. Retamosa, Phys. Rev. E 70, 026208 (2004). [20] J. R. Huzenga and L. G. Moretto, Annu. Rev. Nucl. Sci. 22, 427 (1972). [21] P. Leboeuf, A. G. Monastra, and A. Relaño, Phys. Rev. Lett. 94, 102502 (2005). [22] H. A. Bethe, Rev. Mod. Phys. 9, 69 (1937); H. A. Bethe, Phys. Rev. 50, 332 (1936). [23] T. Ericson, Nucl. Phys. 11, 481 (1959); A. G. W. Cameron, Can. J. Phys. 36, 1040 (1958). [24] Handbook of Mathematical Formulas, edited by M. Abramowitz and I. A. Stegun (Dover Publications, New York, 1972). [25] R. E. Walpole, R. H. Myers, and S. L. Myers, Probability and Statistics for Engineers and Scientists, 6th ed. (Prentice-Hall, Englewood Cliffs, NJ, 2001). [26] M. L. Mehta, Random Matrices (Academic Press, New York, 1991). [27] A. Relaño, J. M. G. Gómez, R. A. Molina, J. Retamosa, and E. Faleiro, Phys. Rev. Lett. 89, 244102 (2002). [29] J. M. G. Gómez, R. A. Molina, A. Relaño, and J. Retamosa, Phys. Rev. E 66, 036209 (2002). [30] M. V. Berry and M. Robnik, J. Phys. A 17, 2413 (1984). [31] E. Faleiro, J. M. G. Gómez, R. A. Molina, L. Muñoz, A. Relaño, and J. Retamosa, Phys. Rev. Lett. 93, 244101 (2004). [32] J. M. G. Gómez, A. Relaño, J. Retamosa, E. Faleiro, M. Vranicar, and M. Robnik, Phys. Rev. Lett. 94, 084101 (2005). [33] M. S. Santhanam and J. N. Bandyopadhyay, Phys. Rev. Lett. 95, 114101 (2005). [34] J. B. French, V. K. B. Kota, A. Pandey, and S. Tomsovic, Ann. Phys. (N.Y.) 181, 198 (1988).
dspace.entity.typePublication
relation.isAuthorOfPublication53fed635-944b-485a-b13a-ea8f9355b7aa
relation.isAuthorOfPublication145acd47-d011-4f1d-864c-e9f7aa0751af
relation.isAuthorOfPublication1d1118d9-569f-4139-988b-921ac5a8407c
relation.isAuthorOfPublication.latestForDiscovery53fed635-944b-485a-b13a-ea8f9355b7aa

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Relano38libre.pdf
Size:
201.44 KB
Format:
Adobe Portable Document Format

Collections