Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Molecular models and activation energies for bonding rearrangement in plasma-deposited alpha-SiNx : H dielectric thin films treated by rapid thermal annealing

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorPrado Millán, Álvaro Del
dc.date.accessioned2023-06-20T19:00:57Z
dc.date.available2023-06-20T19:00:57Z
dc.date.issued2001-06-15
dc.description© 2001 The American Physical Society. We wish to thank the financial support of the Spanish National Office for Science and Technology under grant TIC98/0740 and the technical assistance received from the ion implantation facility “CAI—Implantación Iónica” of the University of Madrid. Dr. E. Martínez from the Department of Chemistry of the University of Murcia is thanked for valuable comments and suggestions.
dc.description.abstractHydrogen and nitrogen release processes in amorphous silicon nitride dielectrics have been studied by MeV ion scattering spectrometry in combination with infrared spectroscopy. The outdiffusion of those light constituents was activated by the thermal energy supplied to the samples by rapid thermal annealing treatments. Molecular models of how these reactions proceed have been proposed based on the information obtained from the infrared spectra, and the validity of the models has been tested by an analysis of the activation energy of the desorption processes. For this purpose, the evolution of the hydrogen concentration versus the annealing temperature was fitted to an Arrhenius-type law obtained from a second-order kinetics formulation of the reactions that are described by the proposed structural models. It was found that the low values of the activation, energies can be consistently explained by the formation of hydrogen bonding interactions between Si-H or N-H groups and nearby doubly occupied nitrogen orbitals. This electrostatic interaction debilitates the Si-H or N-H bond and favors the release of hydrogen. The detailed mechanism of this process and the temperature range in which it takes place depend on the amount and the proportion of hydrogen in SI-H and N-H bonds. Samples with higher nitrogen content, in which all bonded hydrogen is in the form of N-H bonds, are more stable upon annealing than samples in which both Si-H and N-H bonds are detected. in those nitrogen-rich films only a loss of hydrogen is detected at the highest annealing temperatures.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish National Office for Science and Technology
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26270
dc.identifier.doi10.1103/PhysRevB.63.245320
dc.identifier.issn0163-1829
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.63.245320
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59109
dc.issue.number24
dc.journal.titlePhysical review B
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDTIC98/0740
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordElectron-Cyclotron-Resonance
dc.subject.keywordCehmical-Vapor-Deposition
dc.subject.keywordSilicon-Nitride Films. Insulator-Semiconductor Structures
dc.subject.keywordAmorphous Hydrogenated Silicon
dc.subject.keywordGate Dielectrics
dc.subject.keywordInfrared-Spectroscopy
dc.subject.keywordCrystalline Silicon
dc.subject.keywordSi-SiO2 Interfaces
dc.subject.keywordOptical-Properties.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleMolecular models and activation energies for bonding rearrangement in plasma-deposited alpha-SiNx : H dielectric thin films treated by rapid thermal annealing
dc.typejournal article
dc.volume.number63
dcterms.references1) C. G. Van de Walle, in Hydrogen in Semiconductors, edited by C. G. Van de Walle Semiconductors and Semimetals (Academic, San Diego, 1991), Vol. 34. 2) Z. Lu, S. S. He, Y. Ma, and G. Lucovsky, J. Non-Cryst. Solids, 187, 340 (1995). 3) R. E. Norberg, D. J. Leopold, and P. A. Fedders, J. Non-Cryst. Solids, 227–230, 124 (1998). 4) H. J. Stein, V. A. Wells, and R. E. Hampy, J. Electrochem. Soc., 126, 1750 (1979). 5) H. J. Stein, S. M. Myers, and D. M. Follstaedt, J. Appl. Phys., 73, 2755 (1993). 6) A. Beyer, G. Ebest, and R. Reich, Appl. Phys. Lett., 68, 508 (1996). 7) T. P. Ma, IEEE Trans. Electron Devices, 45, 680 (1998). 8) D. Xu and V. J. Kapoor, J. Appl. Phys., 70, 1570 (1991). 9) H. Y. Yang, H. Niimi, and G. Lucovsky, J. Appl. Phys., 83, 2327 (1998). 10) H. Y. Yang, H. Niimi, J. W. Keister, G. Lucovsky, and J. E. Rowe, IEEE Electron Device Lett., 21, 76 (2000). 11) Y. Wu and G. Lucovsky, IEEE Electron Device Lett., 19, 367 (1998). 12) Y. Wu, Y. Lee, and G. Lucovsky, IEEE Electron Device Lett., 21, 116 (2000). 13) S. Hasegawa, Y. Amano, T. Inokuma, and e. Y. Kurata, J. Appl. Phys., 72, 5676 (1992). 14) M. Maeda and K. Ikeda, J. Appl. Phys., 83, 3865 (1998). 15) G. Lucovsky, Y. Wu, H. Niimi, V. Misra, and J. C. Phillips, Appl. Phys. Lett., 74, 2005 (1999). 16) Y. Ma, T. Yasuda, and G. Lucovsky, Appl. Phys. Lett., 64, 2226 (1994). 17) C. G. Parker, G. Lucovsky, and J. R. Hauser, IEEE Electron Device Lett., 19, 106 (1998). 18) G. Lucovsky, J. Vac. Sci. Technol. B, 17, 1340 (1999). 19) H. Niimi and G. Lucovsky, J. Vac. Sci. Technol. B, 17, 2610 (1999). 20) H. Z. Massoud, in Rapid Thermal Annealing Processing: Science and Technology, edited by R. B. Fair (Academic, Boston, 1993), p. 58. 21) D. G. Park, Z. Cherr, D. M. Diatezua, Z. Wang, A. Rockett, H. Morkoc¸, and S. A. Alterovitz, Appl. Phys. Lett., 70, 1263 (1997). 22) Y. Ma, T. Yasuda, and G. Lucovsky, J. Vac. Sci. Technol. B, 11, 952 (1993). 23) M. C. Hugon, F. Delmotte, B. Agius, and J. L. Courant, J. Vac. Sci. Technol. A, 15, 3143 (1997). 24) L. Cai, A. Rohatgi, D. Yang, and M. A. El-Sayed, J. Appl. Phys., 80, 5384 (1996). 25) R. C. Budhani, R. F. Bunshah, and P. A. Flinn, Appl. Phys. Lett., 52, 284 (1988). 26) Z. Lu, P. Santos-Filho, G. Stevens, M. J. Williams, and G. Lucovsky, J. Vac. Sci. Technol. A, 13, 607 (1995). 27) S. García, J. M. Martín, M. Fernández, I. Mártil, and G. González-Díaz, Philos. Mag. B, 73, 487 (1996). 28) S. García, J. M. Martín, I. Mártil, M. Fernández, I. Iborra, and G. González-Díaz, J. Non-Cryst. Solids, 187, 329 (1995). 29) F. L. Martínez, I. Mártil, G. González-Díaz, B. Selle, and I. Sieber, J. Non-Cryst. Solids, 227–230, 523 (1998). 30) W. Bohne, W. Fuhs, J. Röhrich, B. Selle, G. González-Díaz, I. Mártil, F. L. Martínez, and Á. del Prado, Surf. Interface Anal., 30, 534 (2000). 31) W. Bohne, J. Röhrich, and G. Röschert, Nucl. Instrum. Methods Phys. Res. B, 136–138, 633 (1998). 32) W. A. Lanford and M. J. Rand, J. Appl. Phys., 49, 2473(1978). 33) E. Bustarret, M. Bensuoda, M. C. Habrad, J. C. Bruyère, S. Poulin, and S. C. Gujrathi, Phys. Rev. B, 38, 8171 (1988). 34) S. Hasegawa, H. Anbutsu, and e. Y. Kurata, Philos. Mag. B, 59, 365 (1989). 35) G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, and W. Czubatyj, Phys. Rev. B, 28, 3234 (1983). 36) C. Savall, J. C. Bruyère, and J. P. Stoquert, Thin Solid Films, 260, 174 (1995). 37) F. L. Martínez, Á. del Prado, I. Mártil, G. González-Díaz, B. Selle, and I. Sieber, J. Appl. Phys., 86, 2055(1999). 38) J. Robertson, Philos. Mag. B, 69, 307 (1994). 39) G. Lucovsky and J. C. Phillips, J. Non-Cryst. Solids, 227–230, 1221 (1998). 40) J. C. Phillips, J. Non-Cryst. Solids, 34, 153 (1979) --- Non-Cryst. Solids, 47, 203 (1983). 41) H. He and M. F. Thorpe, Phys. Rev. Lett., 54, 2107 (1985). 42) Z. Yin and F. W. Smith, Phys. Rev. B, 43, 4507 (1991). 43) I. N. Levine, Fisicoquímica (McGraw-Hill, Madrid, 1991). 44) F. W. Smith and Z. Yin, J. Non-Cryst. Solids, 137–138, 871 (1991). 45) B. Abeles, L. Yang, P. D. Persons, H. S. Stasiswski, and W. Lanford, Appl. Phys. Lett., 48, 168 (1986). 46) G. Lucovsky, R. J. Nemanich, and J. C. Knights, Phys. Rev. B, 19, 2064 (1979). 47) G. Lucovsky, Z. Jing, and D. R. Lee, J. Vac. Sci. Technol. B, 14, 2832 (1996). 48) Z. Jing, G. Lucovsky, and J. L. Whitten, J. Vac. Sci. Technol. B, 13, 1613 (1995). 49) N. N. Greenwood and A. Earnshaw, Chemistry of the Elements (Pergamon, Oxford, 1984). 50) Z. Lu, S. S. He, Y. Ma, and G. Lucovsky, J. Non-Cryst. Solids, 187, 340 (1995). 51) K. Zellama, L. Chahed, P. Sládek, M. L. Thèye, J. H. von Bardeleben, and P. Roca i Cabarrocas, Phys. Rev. B, 53, 3804 (1996). 52) Y. L. Khait, R. Weil, R. Beserman, W. Beyer, and H. Wagner, Phys. Rev. B, 42, 9000 (1990).
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication7a3a1475-b9cc-4071-a7d3-fbf68fe1dce0
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,69libre.pdf
Size:
135.49 KB
Format:
Adobe Portable Document Format

Collections