Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Central Pattern Generator Incorporating the Actuator Dynamics for a Hexapod Robot

dc.book.titleProceedings of World Academy of Science, Engineering and Technology
dc.contributor.authorMakarov Slizneva, Valeriy
dc.contributor.authorDel Río, Ezequiel
dc.contributor.authorBedia, Manuel G.
dc.contributor.authorVelarde, Manuel G.
dc.contributor.authorEbeling, Werner
dc.date.accessioned2023-06-20T09:40:16Z
dc.date.available2023-06-20T09:40:16Z
dc.date.issued2006
dc.descriptionConference of the World-Academy-of-Science-Engineering-and-Technology. Barcelona, SPAIN. OCT 22-24, 2006.
dc.description.abstractWe proposed the use of a Toda-Rayleigh ring as a central pattern generator (CPG) for controlling hexapodal robots. We show that the ring composed of six Toda-Rayleigh units coupled to the limb actuators reproduces the most common hexapodal gaits. We provide an electrical circuit implementation of the CPG and test our theoretical results obtaining fixed gaits. Then we propose a method of incorporation of the actuator (motor) dynamics in the CPG. With this approach we close the loop CPG - environment - CPG, thus obtaining a decentralized model for the leg control that does not require higher level intervention to the CPG during locomotion in a nonhomogeneous environments. The gaits generated by the novel CPG are not fixed, but adapt to the current robot bahvior.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Union (SPARK)
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipMinisterio de Educación y Ciencia
dc.description.sponsorshipRamón y Cajal
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16798
dc.identifier.issn1307-6884
dc.identifier.officialurlhttp://www.waset.org/journals/waset/v15/v15-120.pdf
dc.identifier.relatedurlhttp://www.waset.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50152
dc.journal.titleProceedings of World Academy of Science Engineering and Technology
dc.language.isoeng
dc.page.final24
dc.page.initial19
dc.publication.placeCANAKKALE
dc.publisherWorld Academy of Science, Engineering & Technology
dc.relation.ispartofseriesProceedings of World Academy of Science Engineering and Technology
dc.relation.projectIDFP6-2003-IST-004690
dc.relation.projectIDPR1/06-14482-B
dc.relation.projectIDESP2004-01511
dc.rights.accessRightsrestricted access
dc.subject.cdu591.1
dc.subject.keywordCentral pattern generator
dc.subject.keywordElectrical circuit
dc.subject.keywordHexapod robot
dc.subject.keywordAnimal gaits
dc.subject.keywordWalking
dc.subject.keywordoscillators
dc.subject.keywordLocomotion
dc.subject.keywordNetwork
dc.subject.ucmFisiología animal (Biología)
dc.subject.unesco2401.13 Fisiología Animal
dc.titleCentral Pattern Generator Incorporating the Actuator Dynamics for a Hexapod Robot
dc.typejournal article
dc.volume.number15
dcterms.referencesE. Kandel, J. Schwartz, and T. Jessell, Principles of Neural Science. Kandel and Schwartz Ed., Elsevier 1991. C. A. Wiersma (ed.) Invertebrate nervous systems. Univ. Chicago Press 1968. H. Cruse, “What mechanisms coordinate leg movement in working arthropods?”, Trends in NeuroScience, vol. 13, pp. 15–21, 1990. M. Golubitsky, I. Stewart, P.-L Buono, and J. J. Collins, ”Symmetry in locomotor central pattern generators and animal gaits”, Nature, vol. 401, pp. 693–695, 1999. H. Cruse, T. Kindermann, M. Schumm, J. Dean, and J. Schmitz, “Walknet - a biologically inspired network to control six-legged walking”, Neural Networks, vol. 11, pp. 1435, 1998. P. Arena, L. Fortuna, and M. Branciforte, “Reaction-diffusion CNN Algorithms to Generate Artificial Locomotion”, IEEE Trans. Circuits Systems I, vol. 46, pp. 253, 1999. W. Y. Yiang, G. Schooner, and J.A.S. Kelso, “A synergetic theory of quadrupedal gaits and gait transition”, J. Theor. Biol. vol. 142, pp. 359– 391, 1990. J. J. Collins and I. Stewart, “Coupled nonlinear oscillators and the symmetries of animal gaits” Nonlinear Science, vol. 3, pp. 349–392, 1993. J. J. Collins and I. Stewart, “Hexapodal gaits and coupled nonlinear oscillator models”. Biological Cybernetics vol. 68, pp. 287–298, 1993. J. J. Collins and I. Stewart, “A group-theoretic approach to rings of coupled biological oscillators”, Biological Cybernetics vol. 71, pp. 95– 103, 1994. M. Golubitsky, I. Stewart, P. L. Buono, and J. J. Collins, “A modular network for legged locomotion”, Physica D vol. 115, pp. 56–72, 1998. J. W. Rayleigh, The Theory of Sound 2nd ed., Dover N.Y., 1945. M. Toda, Theory of Nonlinear Lattices, Springer Berlin, 1981. M. Toda, Nonlinear Waves and Solitons, Kluwer Dordrecht, 1983. V. A. Makarov, W. Ebeling, and M. G. Velarde, “Soliton-like waves on dissipative Toda lattices”, Int. J. Bifurcation and Chaos vol. 10, pp. 1075–1089, 2000. V. A. Makarov, E. Del Rio, W. Ebeling, and M. G. Velarde, “Dissipative Toda-Rayleigh lattice and its oscillatory modes”, Physical Review E vol. 64, pp. 036601–36615, 2001. E. Del Rio, V. A. Makarov, M. G. Velarde, and W. Ebeling, “Mode transitions and wave propagation in a driven-dissipative Toda-Rayleigh ring”, Physical Review E vol. 67, pp. 056208–056217, 2003. S. Still, K. Hepp, and R. J. Douglas, “Neuromorphic walking gait control”, IEEE Trans. Neural Netw. vol 17, pp. 496–508, 2006. V. A. Makarov, M. G. Velarde, A. Chetverikov, and W. Ebeling, “Anharmonicity and its significance to non-Ohmic electric conduction”, Physical Review E, vol. 73, pp. 066626-066612, 2006. Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer- Verlag, Berlin, 1995. A. C. Singer and A. V. Oppenheim, “Circuit implementation of soliton systems”, Int. J. Bifurcation Chaos vol. 9, pp. 571, 1999. N. Islam, J. P. Singh, and K. Steiglitz, “Soliton phase shifts in a dissipative lattice”, J. Appl. Phys. vol. 62, pp. 689–693, 1987.
dspace.entity.typePublication
relation.isAuthorOfPublicationa5728eb3-1e14-4d59-9d6f-d7aa78f88594
relation.isAuthorOfPublication.latestForDiscoverya5728eb3-1e14-4d59-9d6f-d7aa78f88594

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Makarov19.pdf
Size:
504.92 KB
Format:
Adobe Portable Document Format

Collections