Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Study of the observational compatibility of an inhomogeneous cosmology with linear expansion according to SNe Ia

dc.contributor.authorMonjo Agut, Robert
dc.date.accessioned2023-06-17T23:59:53Z
dc.date.available2023-06-17T23:59:53Z
dc.date.issued2017-11-08
dc.descriptionMonjo, R. (2017). Study of the observational compatibility of an inhomogeneous cosmology with linear expansion according to SNe Ia. Physical Review D, 96(10), 103505.
dc.description.abstractMost of current cosmological theories are built combining an isotropic and homogeneous manifold with a scale factor that depends on time. If one supposes a hyperconical universe with linear expansion, an inhomogeneous metric can be obtained by an appropriate transformation that preserves the proper time. This model locally tends to a flat Friedman-Robertson-Walker metric with linear expansion. The objective of this work is to analyze the observational compatibility of the inhomogeneous metric considered. For this purpose, the corresponding luminosity distance was obtained and was compared with the observations of 580 SNe Ia, taken from the Supernova Cosmology Project. The best fit of the hyperconical model obtains χ20=562, the same value as the standard ΛCDM model. Finally, a possible relationship is found between both theories.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/64012
dc.identifier.doi10.1103/PhysRevD.96.103505
dc.identifier.issn2470-0010
dc.identifier.officialurlhttps://doi.org/10.1103/PhysRevD.96.103505
dc.identifier.urihttps://hdl.handle.net/20.500.14352/19132
dc.issue.number10
dc.journal.titlePhysical Review D
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu524.8
dc.subject.keywordEvolution of the universe
dc.subject.keywordRelativistic aspects of cosmology
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.subject.ucmFísica matemática
dc.titleStudy of the observational compatibility of an inhomogeneous cosmology with linear expansion according to SNe Ia
dc.typejournal article
dc.volume.number96
dcterms.references[1] A. S. Eddington, The Expanding Universe (Cambridge University Press, London, 1933). [2] R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe (Vintage Books, London, 2004). [3] P. J. Steinhardt, Sci. Am. 304, 36 (2011). [4] J. Earman and J. Mosterín, Philos. Sci. 66, 1 (1999). [5] S. Hollands and R. M. Wald, Gen. Relativ. Gravit. 34, 2043 (2002). [6] D. N. Spergel et al. (WMAP Collaboration), Astrophys. J. Suppl. Ser. 170, 377 (2007). [7] T. Clifton, T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys. Rep. 513, 1 (2012). [8] K. Koyama, Rep. Prog. Phys. 79, 046902 (2016). [9] A. Benoit-Lévy and G. Chardin, Astron. Astrophys. 537, A78 (2012). [10] F. Melia, Mon. Not. R. Astron. Soc. 382, 1917 (2007). [11] L. Perivolaropoulos and A. Shafieloo, Phys. Rev. D 79, 123502 (2009). [12] L. Verde, R. Jimenez, and S. Feeney, Phys. Dark Universe 2, 65 (2013). [13] J. A. S. Lima, arXiv:0708.3414. [14] F. Melia and M. Abdelqader, Int. J. Mod. Phys. D D18, 1889 (2009). [15] F. Melia and A. S. H. Shevchuk, Mon. Not. R. Astron. Soc. 419, 2579 (2012). [16] G. F. Lewis, Mon. Not. R. Astron. Soc. 432, 2324 (2013). [17] J. B. Jimenez, R. Lazkoz, and A. L. Maroto, Phys. Rev. D 80, 023004 (2009). [18] A. R. Liddle, An Introduction to Modern Cosmology (Wiley, Chichester, 2003). [19] Planck Collaboration, Astron. Astrophys. 594, A8 (2016). [20] D. N. Spergel et al. (WMAP Collaboration), Astrophys. J. Suppl. Ser. 170, 377 (2007). [21] G. Hinshaw et al., Astrophys. J. Suppl. Ser. 208, 19 (2013). [22] G. F. R. Ellis, Gen. Relativ. Gravit. 39, 1047 (2007). [23] X.-P. Yan, D.-Z. Liu, and H. Wei, Phys. Lett. B 742, 149 (2015). [24] D. B. Sanders, E. S. Phinney, G. Neugebauer, B. T. Soifer, and K. Matthews, Astrophys. J. 347, 29 (1989). [25] J. Kennefick and S. Bursick, Astron. J. 136, 1799 (2008). [26] C. R. Burns, M. Stritzinger, and M. M. Phillips, Astron. J. 1010, 4040 (2010). [27] A. Conley et al., Astrophys. J. Suppl. Ser. 192, 01 (2011). [28] F. Natali, E. Giallongo, S. Cristiani, and F. La-Franca, Astron. J. 115, 397 (1998). [29] D. R. Kowalski et al., Astron. J. 686, 749 (2008). [30] N. Suzuki et al., Astrophys. J. 746, 85 (2012). [31] D. K. Wise, Theor. Math. Phys. 19, 1017 (2015). [32] S. Gryb, Gen. Relativ. Gravit. 47, 37 (2015). [33] N. Deruelle, M. Sasaki, Y. Sendouda, and D. Yamauchi, Prog. Theor. Phys. 123, 169 (2010). [34] G. M. Szabó, L. A. Gergely, and Z. Keresztes, PMC Phys. A 1, 8 (2007). [35] E. Komatsu et al., Astrophys. J. Suppl. Ser. 180, 330 (2009). [36] L. M. Krauss and B. Chaboyer, Science 299, 65 (2003). [37] O. Pisantia, A. Cirillo, S. Esposito, F. Iocco, G. Mangano, G. Miele, and P. D. Serpico, Comput. Phys. Commun. 178, 956 (2008). [38] S. P. Goodwin, P. Thomas, A. J. Barber, J. Gribbin, and L. I. Onuora, arXiv:9906187. [39] S. Perlmutter et al., Astrophys. J. 517, 565 (1999). [40] A. L. Serra and M. Dominguez, Mon. Not. R. Astron. Soc. 415, L74 (2011). [41] M. Domínguez and A. N. Ruiz, AIP Conf. Proc. 1471, 70 (2012). [42] P. Bull, T. Clifton, and P. G. Ferreira, Phys. Rev. D 85, 024002 (2012).
dspace.entity.typePublication
relation.isAuthorOfPublication228519da-1080-4d00-bb66-4d255b7bafe0
relation.isAuthorOfPublication.latestForDiscovery228519da-1080-4d00-bb66-4d255b7bafe0

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
monjo_study_cita.pdf
Size:
872.3 KB
Format:
Adobe Portable Document Format

Collections