Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

B(E2; 2_(1)^(+) → 0_(1)^(+)) value in Kr^(90)

dc.contributor.authorFraile Prieto, Luis Mario
dc.contributor.authorMach, H.
dc.contributor.authorPaziy, V.
dc.contributor.authorOlaizola, B.
dc.contributor.authorVedia Fernández, María Victoria
dc.date.accessioned2023-06-19T13:31:13Z
dc.date.available2023-06-19T13:31:13Z
dc.date.issued2014-12-01
dc.description© 2014 American Physical Society. Artículo firmado por 49 autores. This work was supported by NuPNET and the German BMBF by contracts no. 05P12PKNUF and 05P12DRNUP, the Spanish MINECO via projects no. FPA2010-17142, CPAN (CSD 2007-00042), and PRI-PIMNUP-2011-1338 within the ERA-NET NuPNET call for translational joint activities, the UK STFC by contract no. DNC7RP01/4 and the UK National Measurement Office. The EXILL and FATIMA campaign would not have been possible without the support of several services at the ILL and the LPSC. We are grateful to the EXOGAM collaboration for the loan of the detectors, to GANIL for assistance during installation and dismantling, and to the FATIMA collaboration for the provision of LaBr3(Ce) detectors and analog electronics.
dc.description.abstractA smooth onset of collectivity in Kr^(88,92,94,96) has been determined from reported B(E2; 2_(1)^(+) → 0_(1)^(+)) and E(2+ 1 ) values. This is in contrast to the sudden onset in even-even Zr, Mo, and Sr isotopes. Our objective was to complete the systematics by determining the B(E2; 2+ 1 → 0+ 1 ) value in Kr^(90), which was produced by cold-neutron-induced fission of 235U. The lifetime of the 2+ 1 state in Kr^(90) was measured via the electronic γ -γ timing technique using the EXILL and FATIMA spectrometers. Based on the measured mean lifetime of τ = 15(10) ps, the B(E2; 2_(1)^(+) → 0_(1)^(+)) value of 13^(+26)_(−5) W.u. in Kr^(90) is determined for the first time and the smooth onset of deformation in the even-even Kr isotopes beyond neutron number N = 50 is confirmed.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipNuPNET
dc.description.sponsorshipGerman BMBF
dc.description.sponsorshipSpanish MINECO
dc.description.sponsorshipCPAN
dc.description.sponsorshipPRI-PIMNUP
dc.description.sponsorshipUK STFC
dc.description.sponsorshipUK National Measurement Office
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29275
dc.identifier.doi10.1103/PhysRevC.90.067301
dc.identifier.issn0556-2813
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevC.90.067301
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33924
dc.issue.number6
dc.journal.titlePhysical Review C
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.projectID05P12PKNUF
dc.relation.projectID05P12DRNUP
dc.relation.projectIDFPA2010-17142
dc.relation.projectIDDNC7RP01/4
dc.rights.accessRightsopen access
dc.subject.cdu539.1
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleB(E2; 2_(1)^(+) → 0_(1)^(+)) value in Kr^(90)
dc.typejournal article
dc.volume.number90
dcterms.references[1] P. Federmann and S. Pittel, Phys. Lett. B 69, 385 (1977). [2] J. Eberth, R. A. Meyer, and K. Sistemich, Nuclear Structure of the Zr Region (Springer, Berlin, 1988). [3] G. Lhersonneau et al., Z. Phys. A 330, 347 (1988). [4] M. Hotchkis et al., Phys. Rev. Lett. 64, 3123 (1990). [5] W. Urban et al., Eur. Phys. J. A 22, 241 (2004). [6] L. Bettermann et al., Phys. Rev. C 82, 044310 (2010). [7] K. L. G. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2010). [8] T. Thomas et al., Phys. Rev. C 88, 044305 (2013). [9] D. Mücher et al., Prog. Nucl. Part. Phys. 59, 361 (2007). [10] M. Albers et al., Phys. Rev. Lett. 108, 062701 (2012). [11] M. Albers et al., Nucl. Phys. A 899, 1 (2013). [12] S. Naimi et al., Phys. Rev. Lett. 105, 032502 (2010). [13] M. Keim et al., Nucl. Phys. A 586, 219 (1995). [14] J.-M. Régis et al., Nucl. Instrum. Methods Phys. Res. A 763, 210 (2014). [15] J.-M. Régis et al., Nucl. Instrum. Methods Phys. Res. A 726, 191 (2013). [16] H. Abele et al., Nucl. Instrum. Methods Phys. Res. A 562, 407 (2006). [17] W. Urban et al., JINST 8, P03014 (2013). [18] J. Simpson et al., Acta Physica Hungarica New Series, Heavy Ion Physics 11, 159 (2000). [19] P. Hoff et al., Z. Phys. A 300, 289 (1981). [20] T. J. Mertzimekis et al., Phys. Rev. C 64, 024314 (2001). [21] D. Mücher, Ph.D. thesis, University of Cologne, 2009.
dspace.entity.typePublication
relation.isAuthorOfPublicationec83106c-33f4-426c-afd6-68c5d859f9d4
relation.isAuthorOfPublicationf4e3f123-33ad-46e8-a3b6-00fd1eba9eeb
relation.isAuthorOfPublication.latestForDiscoveryec83106c-33f4-426c-afd6-68c5d859f9d4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevC.90.067301.pdf
Size:
365.43 KB
Format:
Adobe Portable Document Format

Collections