Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A new approach to predicting mortality in dialysis patients using sociodemographic features based on artificial intelligence

dc.contributor.authorDíez Sanmartín, Covadonga
dc.contributor.authorCabezuelo, Antonio Sarasa
dc.contributor.authorBelmonte, Amado Andrés
dc.date.accessioned2023-06-22T12:39:46Z
dc.date.available2023-06-22T12:39:46Z
dc.date.issued2022-12-29
dc.descriptionCRUE-CSIC (Acuerdos Transformativos 2022)
dc.description.abstractOne of the main problems that affect patients in dialysis therapy who are on the waiting list to receive a kidney transplant is predicting their survival time if they do not receive a transplant. This paper proposes a new approach to survival prediction based on artificial intelligence techniques combined with statistical methods to study the association between sociodemographic factors and patient survival on the waiting list if they do not receive a kidney transplant. This new approach consists of a first stage that uses the clustering techniques that are best suited to the data structure (K-Means, Mini Batch K-Means, Agglomerative Clustering and K-Modes) used to identify the risk profile of dialysis patients. Later, a new method called False Clustering Discovery Reduction is performed to determine the minimum number of populations to be studied, and whose mortality risk is statistically differentiable. This approach was applied to the OPTN medical dataset (n = 44,663). The procedure started from 11 initial clusters obtained with the Agglomerative technique, and was reduced to eight final risk populations, for which their Kaplan-Meier survival curves were provided. With this result, it is possible to make predictions regarding the survival time of a new patient who enters the waiting list if the sociodemographic profile of the patient is known. To do so, the predictive algorithm XGBoost is used, which allows the cluster to which it belongs to be predicted and the corresponding Kaplan-Meier curve to be associated with it. This prediction process is achieved with an overall Multi-class AUC of 99.08 %.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.departmentDepto. de Medicina
dc.description.facultyFac. de Informática
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.sponsorshipHealth Resources and Services Administration
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/76745
dc.identifier.doi10.1016/j.artmed.2022.102478
dc.identifier.issn09333657
dc.identifier.officialurlhttps://doi.org/10.1016/j.artmed.2022.102478
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0933365722002305
dc.identifier.urihttps://hdl.handle.net/20.500.14352/73009
dc.journal.titleArtificial Intelligence in Medicine
dc.language.isoeng
dc.page.initial102478
dc.publisherElsevier
dc.relation.projectID234-2005-370011C
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordArtificial intelligence
dc.subject.keywordMachine learning
dc.subject.keywordSurvival analysis
dc.subject.keywordDialysis
dc.subject.keywordKidney transplant
dc.subject.keywordKidney waiting list
dc.subject.ucmInformática médica y telemedicina
dc.titleA new approach to predicting mortality in dialysis patients using sociodemographic features based on artificial intelligence
dc.typejournal article
dc.volume.number136
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0933365722002305-main.pdf
Size:
5.43 MB
Format:
Adobe Portable Document Format

Collections