Toward the integration of omics data in epidemiological studies: still a “long and winding road”

dc.contributor.authorLópez de Maturana, E.
dc.contributor.authorPineda Sanjuan, Silvia
dc.contributor.authorÁvila Brande, David
dc.contributor.authorVan Steen, K.
dc.contributor.authorMalats, N.
dc.date.accessioned2024-04-05T12:29:40Z
dc.date.available2024-04-05T12:29:40Z
dc.date.issued2016-07-18
dc.description.abstractPrimary and secondary prevention can highly benefit a personalized medicine approach through the accurate discrimination of individuals at high risk of developing a specific disease from those at moderate and low risk. To this end precise risk prediction models need to be built. This endeavor requires a precise characterization of the individual exposome, genome, and phenome. Massive molecular omics data representing the different layers of the biological processes of the host and the nonhost will enable to build more accurate risk prediction models. Epidemiologists aim to integrate omics data along with important information coming from other sources (questionnaires, candidate markers) that has been proved to be relevant in the discrimination risk assessment of complex diseases. However, the integrative models in large-scale epidemiologic research are still in their infancy and they face numerous challenges, some of them at the analytical stage. So far, there are a small number of studies that have integrated more than two omics data sets, and the inclusion of non-omics data in the same models is still missing in most of studies. In this contribution, we aim at approaching the omics and non-omics data integration from the epidemiology scope by considering the “massive” inclusion of variables in the risk assessment and predictive models. We also provide already available examples of integrative contributions in the field, propose analytical strategies that allow considering both omics and non-omics data in the models, and finally review the challenges imbedding this type of research.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipFondo de Investigaciones Sanitarias (FIS)
dc.description.sponsorshipInstituto de Salud Carlos III, Spain
dc.description.sponsorshipRed Temática de Investigación Cooperativa en Cáncer
dc.description.sponsorshipISCIII, Spain
dc.description.sponsorshipEuropean Cooperation in Science and Technology
dc.description.sponsorshipWorld Cancer Research
dc.description.sponsorshipObra Social Fundación la Caixa
dc.description.statuspub
dc.identifier.citationLópez de Maturana, E. et al. (2016) «Toward the integration of Omics data in epidemiological studies: still a “long and winding road”», Genetic Epidemiology, 40(7), pp. 558-569. doi:10.1002/GEPI.21992
dc.identifier.doi10.1002/GEPI.21992
dc.identifier.essn1098-2272
dc.identifier.issn0741-0395
dc.identifier.officialurlhttps://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.21992
dc.identifier.pmid27432111
dc.identifier.relatedurlhttps://pubmed.ncbi.nlm.nih.gov/27432111/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/102751
dc.issue.number7
dc.journal.titleGenetic Epidemiology
dc.language.isoeng
dc.page.final569
dc.page.initial558
dc.publisherWiley Periodicals, LLC.
dc.relation.projectIDPI12-00815
dc.relation.projectID12/0036/0050
dc.relation.projectID15-0391
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu616-036.22
dc.subject.cdu613/614
dc.subject.cdu616-006-089.5
dc.subject.cdu577.113
dc.subject.cdu616-006.04-02
dc.subject.cdu576.385.5
dc.subject.cdu577.2
dc.subject.cdu57.087.1
dc.subject.cdu519.22-76
dc.subject.keywordchallenges
dc.subject.keywordepidemiology
dc.subject.keywordexposure
dc.subject.keywordgenetic susceptibility
dc.subject.keywordintegration
dc.subject.keywordomics data
dc.subject.keywordstatistical methods
dc.subject.keywordoutcome
dc.subject.ucmGenética médica
dc.subject.ucmBiología molecular (Biología)
dc.subject.ucmAtención primaria y medicina de familia
dc.subject.ucmOncología
dc.subject.ucmInvestigación operativa (Estadística)
dc.subject.ucmEconometría (Estadística)
dc.subject.unesco3202 Epidemiología
dc.subject.unesco3210 Medicina Preventiva
dc.subject.unesco3201.01 Oncología
dc.subject.unesco3201.02 Genética Clínica
dc.subject.unesco3207.03 Carcinogénesis
dc.subject.unesco1207 Investigación Operativa
dc.subject.unesco1209 Estadística
dc.subject.unesco2405 Biometría
dc.titleToward the integration of omics data in epidemiological studies: still a “long and winding road”
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number40
dspace.entity.typePublication
relation.isAuthorOfPublication9ff02bb9-3623-452e-ad72-8bb19687ec4e
relation.isAuthorOfPublicationb9cc815b-035a-4792-9340-812f5a77dd77
relation.isAuthorOfPublication.latestForDiscovery9ff02bb9-3623-452e-ad72-8bb19687ec4e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Genetic Epidemiology - 2016 - Maturana - Toward the integration of Omics data in epidemiological studies still a long and.pdf
Size:
731.19 KB
Format:
Adobe Portable Document Format

Collections