Evidence to subcanonicity of codimension two subvarieties of G(1,4)
dc.contributor.author | Arrondo Esteban, Enrique | |
dc.contributor.author | Fania, Maria Lucia | |
dc.date.accessioned | 2023-06-20T09:32:01Z | |
dc.date.available | 2023-06-20T09:32:01Z | |
dc.date.issued | 2006 | |
dc.description.abstract | In this paper, we show that any smooth subvariety of codimension two in G(1,4) (the Grassmannian of lines of P-4) of degree at most 25 is subcanonical. Analogously, we prove that smooth subvarieties of codimension two in G(1,4) that are not of general type have degree <= 32 and we classify all of them. In both classifications, any subvariety in the final list is either a complete intersection or the zero locus of a section of a twist of the rank-two universal bundle on G(1,4). | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/14820 | |
dc.identifier.doi | 10.1142/S0129167X06003436 | |
dc.identifier.issn | 0129-167X | |
dc.identifier.officialurl | http://www.worldscinet.com/ijm/ijm.shtml | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/49830 | |
dc.issue.number | 2 | |
dc.journal.title | International journal of mathematics | |
dc.page.final | 168 | |
dc.page.initial | 157 | |
dc.publisher | World Scientific | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Projective space | |
dc.subject.keyword | smooth surfaces | |
dc.subject.keyword | general type | |
dc.subject.keyword | Grassmannians | |
dc.subject.keyword | P-4 | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Evidence to subcanonicity of codimension two subvarieties of G(1,4) | |
dc.type | journal article | |
dc.volume.number | 17 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5bd88a9c-e3d0-434a-a675-3221b2fde0e4 | |
relation.isAuthorOfPublication.latestForDiscovery | 5bd88a9c-e3d0-434a-a675-3221b2fde0e4 |