Evidence to subcanonicity of codimension two subvarieties of G(1,4)

dc.contributor.authorArrondo Esteban, Enrique
dc.contributor.authorFania, Maria Lucia
dc.date.accessioned2023-06-20T09:32:01Z
dc.date.available2023-06-20T09:32:01Z
dc.date.issued2006
dc.description.abstractIn this paper, we show that any smooth subvariety of codimension two in G(1,4) (the Grassmannian of lines of P-4) of degree at most 25 is subcanonical. Analogously, we prove that smooth subvarieties of codimension two in G(1,4) that are not of general type have degree <= 32 and we classify all of them. In both classifications, any subvariety in the final list is either a complete intersection or the zero locus of a section of a twist of the rank-two universal bundle on G(1,4).
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14820
dc.identifier.doi10.1142/S0129167X06003436
dc.identifier.issn0129-167X
dc.identifier.officialurlhttp://www.worldscinet.com/ijm/ijm.shtml
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49830
dc.issue.number2
dc.journal.titleInternational journal of mathematics
dc.page.final168
dc.page.initial157
dc.publisherWorld Scientific
dc.rights.accessRightsmetadata only access
dc.subject.cdu512.7
dc.subject.keywordProjective space
dc.subject.keywordsmooth surfaces
dc.subject.keywordgeneral type
dc.subject.keywordGrassmannians
dc.subject.keywordP-4
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleEvidence to subcanonicity of codimension two subvarieties of G(1,4)
dc.typejournal article
dc.volume.number17
dspace.entity.typePublication
relation.isAuthorOfPublication5bd88a9c-e3d0-434a-a675-3221b2fde0e4
relation.isAuthorOfPublication.latestForDiscovery5bd88a9c-e3d0-434a-a675-3221b2fde0e4

Download

Collections