Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Polarization changes at Lyot depolarizer output for different types of input beams

dc.contributor.authorPiquero Sanz, Gemma María
dc.contributor.authorGonzález de Sande, Juan Carlos
dc.contributor.authorTeijeiro, Cristina
dc.date.accessioned2023-06-20T03:36:16Z
dc.date.available2023-06-20T03:36:16Z
dc.date.issued2012-03
dc.description© 2012 Optical Society of America. One of the authors (G. P.) is grateful to the project FIS2010-17543 of the Ministerio de Ciencia e Innovación of Spain.
dc.description.abstractLyot depolarizers are optical devices made of birefringent materials used for producing unpolarized beams from totally polarized incident light. The depolarization is produced for polychromatic input beams due to the different phase introduced by the Lyot depolarizer for each wavelength. The effect of this device on other types of incident fields is investigated. In particular two cases are analyzed: (i) monochromatic and nonuniformly polarized incident beams and (ii) incident light synthesized by superposition of two monochromatic orthogonally polarized beams with different wavelengths. In the last case, it is theoretically and experimentally shown that the Lyot depolarizer increases the degree of polarization instead of depolarizes.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación of Spain
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23322
dc.identifier.doi10.1364/JOSAA.29.000278
dc.identifier.issn1084-7529
dc.identifier.officialurlhttp://dx.doi.org/10.1364/JOSAA.29.000278
dc.identifier.relatedurlhttp://www.opticsinfobase.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44017
dc.issue.number3
dc.journal.titleJournal of The Optical Society Of America A-Optics Image Science and Vision
dc.language.isoeng
dc.page.final284
dc.page.initial278
dc.publisherOptical Society of America
dc.relation.projectIDFIS2010- 17543
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordQuasi-Monochromatic Light
dc.subject.keywordBirefringent-Crystal
dc.subject.keywordUnpolarized Light
dc.subject.keywordWhite-Light
dc.subject.keywordPropagation
dc.subject.keywordGratings
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titlePolarization changes at Lyot depolarizer output for different types of input beams
dc.typejournal article
dc.volume.number29
dcterms.references1. B. Chakraborty, “Depolarizing effect of propagation of a polarized polychromatic beam through an optically active medium: a generalized study”, J. Opt. Soc. Am. A 3, 1422–1427 (1986). 2. M. Honma and T. Nose, “Liquid-crystal depolarizer consisting of randomly aligned hybrid orientation domains”, Appl. Opt. 43, 4667–4671 (2004). 3. K. Lindfors, A. Priimagi, T. Setäla, A. Schevchenko, A. T. Friberg, and M. Kaivola, “Local polarization of tightly focused unpolarized light”, Nat. Photon. 1, 228–231 (2007). 4. F. Gori, J. Tervo, and J. Turunen, “Correlation matrices of completely unpolarized beams”, Opt. Lett. 34, 1447–1449 (2009). 5. I. Vartiainen, J. Tervo, and M. Kuittinen, “Depolarization of quasi-monochromatic light by thin resonant gratings”, Opt. Lett. 34, 1648–1650 (2009). 6. C. Vena, C. Versace, G. Strangi, and R. Bartolino, “Light depolarization by non-uniform polarization distribution over a beam cross section”, J. Opt. A 11, 125704 (2009). 7. T. D. Visser, D. Kuebel, M. Lahiri, T. Shirai, and E. Wolf, “Unpolarized light beams with different coherence properties”, J. Mod. Opt. 56, 1369–1374 (2009). 8. B. Lyot, “Recherches sur la polarisation de la lumière des planètes et de quelques substances terrestres”, in Tome VIII, Facs. I of Annales de l’Observatoire de Paris (Meudon) (H. Deslandres, 1929). 9. S. Lu and A. P. Loeber, “Depolarization of white light by a birefringent crystal”, J. Opt. Soc. Am. 65, 248–251 (1975). 10. P. H. Richter, “The Lyot depolarizer in quasimonochromatic light”, J. Opt. Soc. Am. 69, 460–463 (1979). 11. A. F. Loeber, “Depolarization of white light by a birefringent crystal. II. The Lyot depolarizer”, J. Opt. Soc. Am. 72, 650-656 (1982). 12. W. K. Burns, “Degree of polarization in the Lyot depolarizer”, J. Lightwave Technol. 1, 475–479 (1983). 13. K. Mochizuki, “Degree of polarization in joined fibers: the Lyot depolarizer”, Appl. Opt. 23, 3284–3288 (1984). 14. J. Blake, B. Szafraniec, and J. Feth, “Partially polarized fiberoptic gyro”, Opt. Lett. 21, 1192–1194 (1996). 15. J. S. Wang, J. R. Costelloe, and R. H. Stolen, “Reduction of the degree of polarization of a diode laser with a fiber Lyot depolarizer”, IEEE Photon. Technol. Lett. 11, 1449–1451 (1999). 16. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. F. Bliss, and D. Weyburne, “GaAs optical parametric oscillator with circularly polarized and depolarized pump”, Opt. Lett. 32, 2735–2737 (2007). 17. A. Shaham and H. S. Eisenberg, “Realizing controllable depolarization in photonic quantum-information channels”, Phys. Rev. A 83, 022303 (2011). 18. F. Gori, M. Santarsiero, R. Simon, G. Piquero, R. Borghi, and G. Guattari, “Coherent-mode decomposition of partially polarized, partially coherent sources”, J. Opt. Soc. Am. A 20, 78–84 (2003). 19. F. Gori, “Partially correlated sources with complete polarization”, Opt. Lett. 33, 2818–2820 (2008). 20. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications”, Adv. Opt. Photon. 1, 1–57 (2009). 21. R. Martínez-Herrero, P. M. Mejías, and G. Piquero, Characterization of Partially Polarized Light Fields, Springer Series in Optical Sciences (Springer, 2009), p. 147. 22. V. Ramírez-Sánchez, G. Piquero, and M. Santarsiero, “Generation and characterization of spirally polarized fields”, J. Opt. A 11, 085708 (2009). 23. V. Ramírez-Sánchez, G. Piquero, and M. Santarsiero, “Synthesis and characterization of partially coherent beams with propagation-invariant transverse polarization pattern”, Opt. Commun. 283, 4484–4489 (2010). 24. T. H. Loftus, A. M. Tomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications”, IEEE J. Sel. Top. Quantum Electron. 13, 487–497 (2007). 25. A. Sevian, O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, “Efficient power scaling of laser radiation by spectralbeam combining”, Opt. Lett. 33, 384–386 (2008). 26. P. M. Mejías, R. Martínez-Herrero, G. Piquero, and J. M. Movilla, “Parametric characterization of the spatial structure of nonuniformly polarized laser beams”, Prog. Quantum Electron. 26, 65–130 (2002). 27. F.Gori, M.Santarsiero, S.Vicalvi, R.Borghi, and G.Guattari, “Beam coherence polarization matrix”, Pure Appl. Opt.7, 941–951 (1998). 28. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007). 29. M. Born and E. Wolf, Principles of Optics, 7th expanded ed. (Cambridge University, 1999). 30. F. Gori, “Polarization basis for vortex beams”, J. Opt. Soc. Am. A 18, 1612–1617 (2001). 31. Y. Gorodetski, G. Biener, A. Niv, V. Kleiner, and E. Haman, “Space-variant polarization manipulation for far field polarimetry by use of subwavelength dielectric gratings”, Opt. Lett. 30, 2245–2247 (2005).
dspace.entity.typePublication
relation.isAuthorOfPublication3a400653-91df-40bb-8891-03df312fea56
relation.isAuthorOfPublication.latestForDiscovery3a400653-91df-40bb-8891-03df312fea56

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PiqueroG03libre.pdf
Size:
1.83 MB
Format:
Adobe Portable Document Format

Collections