Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Violation of Cauchy-Schwarz inequalities by spontaneous Hawking radiation in resonant boson structures

dc.contributor.authorMuñoz de Nova, Juan Ramón
dc.contributor.authorSols Lucía, Fernando
dc.contributor.authorZapata, I.
dc.date.accessioned2023-06-19T13:25:09Z
dc.date.available2023-06-19T13:25:09Z
dc.date.issued2014-04-07
dc.description© 2014 American Physical Society. We thank D. Guery-Odelin, R. Parentani, and C.Westbrook for valuable discussions. Support from MINECO (Spain) through grant FIS2010-21372 and from Comunidad de Madrid through grant MICROSERES-CM (S2009/TIC-1476) is also acknowledged.
dc.description.abstractThe violation of a classical Cauchy-Schwarz (CS) inequality is identified as an unequivocal signature of spontaneous Hawking radiation in sonic black holes. This violation can be particularly large near the peaks in the radiation spectrum emitted from a resonant boson structure forming a sonic horizon. As a function of the frequency-dependent Hawking radiation intensity, we analyze the degree of CS violation and the maximum violation temperature for a double barrier structure separating two regions of subsonic and supersonic condensate flow. We also consider the case where the resonant sonic horizon is produced by a space-dependent contact interaction. In some cases, CS violation can be observed by direct atom counting in a time-of-flight experiment. We show that near the conventional zero-frequency peak, the decisive CS violation cannot occur.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26460
dc.identifier.doi10.1103/PhysRevA.89.043808
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.89.043808
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33621
dc.issue.number4
dc.journal.titlePhysical Review A
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDMICROSERES-CM (S2009/TIC-1476)
dc.relation.projectID(FIS2010-21372)
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordBlack-Hole Evaporation
dc.subject.ucmFísica de materiales
dc.titleViolation of Cauchy-Schwarz inequalities by spontaneous Hawking radiation in resonant boson structures
dc.typejournal article
dc.volume.number89
dcterms.references[1] S. W. Hawking, Nature (London) 248, 30 (1974); ,Commun. Math. Phys. 43, 199 (1975). [2] W. G. Unruh, Phys. Rev. D 14, 870 (1976). [3] W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981). [4] U. Leonhardt, T. Kiss, and P. O¨ hberg, J. Opt. B 5, S42 (2003). [5] U. Leonhardt, T. Kiss, and P. O¨ hberg, Phys. Rev. A 67, 033602 (2003). [6] R. Balbinot,A. Fabbri, S. Fagnocchi, A. Recati, and I. Carusotto, Phys. Rev. A 78, 021603 (2008). [7] I. Carusotto, S. Fagnocchi, A. Recati, R. Balbinot, and A. Fabri, New J. Phys. 10, 103001 (2008). [8] J. Macher and R. Parentani, Phys. Rev. A 80, 043601 (2009). [9] S. Finazzi and R. Parentani, New J. Phys. 12, 095015 (2010). [10] A. Coutant and R. Parentani, Phys. Rev. D 81, 084042 (2010). [11] O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A. Zayats, and J. Steinhauer, Phys. Rev. Lett. 105, 240401 (2010). [12] I. Zapata, M. Albert, R. Parentani, and F. Sols, New J. Phys. 13, 063048 (2011). [13] P. É. Larré, A. Recati, I. Carusotto, and N. Pavloff, Phys. Rev. A 85, 013621 (2012). [14] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982). [15] R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University Press, New York, 2000). [16] D.F.Walls andG. J.Milburn, Quantum Optics, 2nd ed. (Springer Verlag, Berlin, 2008). [17] A. Recati, N. Pavloff, and I. Carusotto, Phys. Rev. A 80, 043603 (2009). [18] R. Schützhold, Phys. Rev. Lett. 97, 190405 (2006). [19] E. Rubino, J. McLenaghan, S. C. Kehr, F. Belgiorno, D. Townsend, S. Rohr, C. E. Kuklewicz, U. Leonhardt, F. König, and D. Faccio, Phys. Rev. Lett. 108, 253901 (2012). [20] D. Campo and R. Parentani, Phys. Rev. D 74, 025001 (2006). [21] E. Martín-Martínez, L. J. Garay, and J. Le´on, Phys. Rev. D 82, 064028 (2010). [22] N. Friis and I. Fuentes, J. Mod. Opt. 60, 22 (2013). [23] B. Horstmann, B. Reznik, S. Fagnocchi, and J. I. Cirac, Phys. Rev. Lett. 104, 250403 (2010). [24] B. Horstmann, R. Schützhold, B. Reznik, S. Fagnocchi, and J. I. Cirac, New J. Phys. 13, 045008 (2011). [25] S. Finazzi and I. Carusotto, arXiv:1309.3414. [26] K. V. Kheruntsyan, J.-C. Jaskula, P. Deuar, M. Bonneau, G. B. Partridge, J. Ruaudel, R. Lopes, D. Boiron, and C. I.Westbrook, Phys. Rev. Lett. 108, 260401 (2012). [27] Unless otherwise stated, we are not showing trivial Dirac-delta factors which ensure equal frequency to all phonons that participate in any correlation function. [28] Note that, because of the condensate flow, in general Sij ≠Sji . [29] I. Zapata and F. Sols, Phys. Rev. Lett. 102, 180405 (2009). [30] Note that the second type of quantum thermal average is nonzero only if i has a positive normalization and j a negative one, or vice versa. [31] V. I. Arnold, Ordinary Differential Equations (Springer Verlag, Berlin, 1992). [32] D. Kaltchev and A. J. Dragt, Physica D 242, 1 (2013). [33] Note that pd_2(ω) > 0 is always verified for ω < ωmax provided that k_(d2−out)(ω_max) < q_d .
dspace.entity.typePublication
relation.isAuthorOfPublication6e3dc402-4876-48e1-8419-10b3f44303a5
relation.isAuthorOfPublication.latestForDiscovery6e3dc402-4876-48e1-8419-10b3f44303a5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sols, F 01libre.pdf
Size:
581.45 KB
Format:
Adobe Portable Document Format

Collections