Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Light scattering from nonequilibrium concentration fluctuations in a polymer solution

dc.contributor.authorLi, W. B.
dc.contributor.authorZhang, K. J.
dc.contributor.authorSengers, Jan V.
dc.contributor.authorGammon, R. W.
dc.contributor.authorOrtiz De Zárate Leira, José María
dc.date.accessioned2023-06-20T19:10:07Z
dc.date.available2023-06-20T19:10:07Z
dc.date.issued2000-05-22
dc.description© 2000 American Institute of Physics. We are indebted to J. F. Douglas for valuable discussions and to S. C. Greer for helpful advice concerning the characterization of the polymer sample. J.V.S. acknowledges the hospitality of the Institute for Theoretical Physics of the Utrecht University, where part of the manuscript was prepared. The research at the University of Maryland is supported by the U.S. National Science Foundation under Grant CHE 9805260. J.M.O.Z. was funded by the Spanish Department of Education during his postdoctoral stage at Maryland, when part of the work was done.
dc.description.abstractWe have performed light-scattering measurements in dilute and semidilute polymer solutions of polystyrene in toluene when subjected to stationary temperature gradients. Five solutions with concentrations below and one solution with a concentration above the overlap concentration were investigated. The experiments confirm the presence of long-range nonequilibrium concentration fluctuations which are proportional to (del T)(2)/k(4), where del T is the applied temperature gradient and k is the wave number of the fluctuations. In addition, we demonstrate that the strength of the nonequilibrium concentration fluctuations, observed in the dilute and semidilute solution regime, agrees with theoretical values calculated from fluctuating hydrodynamics. Further theoretical and experimental work will be needed to understand nonequilibrium fluctuations in polymer solutions at higher concentrations.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipU.S. National Science Foundation
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27397
dc.identifier.doi10.1063/1.481524
dc.identifier.issn0021-9606
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.481524
dc.identifier.relatedurlhttp://scitation.aip.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59341
dc.issue.number20
dc.journal.titleJournal of Chemical Physics
dc.language.isoeng
dc.page.final9150
dc.page.initial9139
dc.publisherAmerican Institute of Physics
dc.relation.projectIDCHE-9805260
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordEquilibrium steady-state
dc.subject.keywordStationary heat-flux
dc.subject.keywordThermal-equilibrium
dc.subject.keywordLiquid-mixtures
dc.subject.keywordDiffusion-coefficient
dc.subject.keywordRayleigh-scattering
dc.subject.keywordHydrodynamic radius
dc.subject.keywordMolecular-weights
dc.subject.keywordOsmotic-pressure
dc.subject.keywordMass Diffusion
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleLight scattering from nonequilibrium concentration fluctuations in a polymer solution
dc.typejournal article
dc.volume.number112
dcterms.references1 J. Berne and S. Pecora, Dynamic Light Scattering (McGraw-Hill, New York, 1980). 2 J. P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-Hill, New York, 1980). 3 J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Annu. Rev. Phys. Chem. 45, 213 (1994). 4 T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. Lett. 42, 862 (1979); 44, 472 (1980); Phys. Rev. A 26, 950 (1982); 26, 972 (1982); 26, 995 (1982). 5 D. Ronis and I. Procaccia, Phys. Rev. A 26, 1812 (1982). 6 B. M. Law and J. V. Sengers, J. Stat. Phys. 57, 531 (1989). 7 R. Schmitz and E. G. D. Cohen, J. Stat. Phys. 39, 285 ~1985!; 40, 431 (1985). 8 G. Grinstein, D.-H. Lee, and S. Sachdev, Phys. Rev. Lett. 64, 1927 (1990). 9 P. N. Segrè, R. W. Gammon, J. V. Sengers, and B. M. Law, Phys. Rev. A 45, 714 (1992). 10 W. B. Li, P. N. Segrè, R. W. Gammon, and J. V. Sengers, Physica A 204, 399 (1994). 11 J. C. Nieuwoudt and B. M. Law, Phys. Rev. A 42, 2003 (1990). 12 B. M. Law and J. C. Nieuwoudt, Phys. Rev. A 40, 3880 (1989). 13 P. N. Segrè, R. Schmitz, and J. V. Sengers, Physica A 195, 31 (1993). 14 P. N. Segrè and J. V. Sengers, Physica A 198, 96 (1993). 15 A. Vailati and M. Giglio, Phys. Rev. E 58, 4361 (1998). 16 P. C. Hohenberg and J. B. Swift, Phys. Rev. A 46, 4773 (1992). 17 H. van Beijeren and E. G. D. Cohen, J. Stat. Phys. 53, 77 (1988). 18 I. Pagonabarraga, J. M. Rubí, and L. Torner, Physica A 173, 111 (1991). 19 P. N. Segrè, R. W. Gammon, and J. V. Sengers, Phys. Rev. E 47, 1026 (1993). 20 W. B. Li, P. N. Segrè, and R. W. Gammon, J. Phys.: Condens. Matter 6, A119 (1994). 21 A. Vailati and M. Giglio, Phys. Rev. Lett. 77, 1484 (1996); Prog. Colloid Polym. Sci. 104, 76 (1997). 22 W. Köhler and B. Müller, J. Chem. Phys. 103, 4367 (1995). 23 K. J. Zhang, M. E. Briggs, R. W. Gammon, and J. V. Sengers, J. Chem. Phys. 104, 6881 (1996). 24 K. J. Zhang, M. E. Briggs, J. V. Sengers, R. W. Gammon, and J. F. Douglas, J. Chem. Phys. 111, 2270 (1999). 25 W. B. Li, K. J. Zhang, J. V. Sengers, R. W. Gammon, and J. M. Ortiz de Zárate, Phys. Rev. Lett. 81, 5580 (1998). 26 M. A. Anisimov, V. A. Agayan, A. A. Povodyrev, J. V. Sengers, and E. E. Gorodetskii, Phys. Rev. E 57, 1946 (1998). 27 R. Schmitz, Physica A 206, 25 (1995). 28 I. Noda, Y. Higo, N. Ueno, and T. Fujimoto, Macromolecules 17, 1055 (1984). 29 Y. Higo, N. Ueno, and I. Noda, Polym. J. (Tokyo) 15, 367 (1983). 30 B. M. Law, P. N. Segrè, R. W. Gammon, and J. V. Sengers, Phys. Rev. A 41, 816 (1990). 31 Th. G. Scholte, J. Polym. Sci., Part A-2: Polym. Phys. 8, 841 (1970). 32 P. N. Pusey, J. M. Vaughan, and G. Williams, J. Chem. Soc., Faraday Trans. 70, 1696 (1970). 33 B. Appelt and G. Meyerhoff, Macromolecules 13, 657 (1980). 34 V. Petrus, B. Porsch, B. Nyström, and L.-O. Sundelöf, Makromol. Chem. 183, 1279 (1982). 35 E. Ozdemir and R. W. Richards, Polymer 24, 1097 (1983). 36 M. Ramanathan and M. E. McDonnell, Macromolecules 17, 2093 (1984). 37 B. K. Varma, Y. Fujita, M. Takakashi, and T. Nose, J. Polym. Sci. 22, 1781 (1984). 38 K. Huber, S. Bantle, P. Lutz, and W. Burchard, Macromolecules 18, 1461 (1985). 39 B. D. Freeman, D. S. Soane, and M. M. Denn, Macromolecules 23, 245 (1990). 40 W. Köhler, C. Rosenauer, and P. Rossmanith, Int. J. Thermophys. 16, 11 (1995). 41 P. Vidakovic and F. Rondelez, Macromolecules 18, 700 (1985). 42 H. Yamakawa, Modern Theory of Polymer Solutions (Harper & Row, New York, 1971). 43 Y. Takakashi, Y. Isono, I. Noda, and M. Nagasawa, Macromolecules 18, 1002 (1985). 44 L. A. Papazian, Polymer 10, 399 (1969). 45 F. Brochard and P. G. de Gennes, C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers 293, 1025 (1981). 46 B. Nyström and J. Roots, Polymer 33, 1548 (1992). 47 X. L. Wu, D. J. Pine, and P. K. Dixon, Phys. Rev. Lett. 66, 2408 (1991). 48 S. T. Milner, Phys. Rev. Lett. 66, 1477 (1991). 49 A. Onuki, Phys. Rev. Lett. 62, 2472 (1989). 50 A. Vailati and M. Giglio, Nature (London) 390, 262 (1997).
dspace.entity.typePublication
relation.isAuthorOfPublicationd2b809b1-3ba2-407e-add2-8b8251e306ba
relation.isAuthorOfPublication.latestForDiscoveryd2b809b1-3ba2-407e-add2-8b8251e306ba

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ortiz36libre.pdf
Size:
455.32 KB
Format:
Adobe Portable Document Format

Collections