Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Moduli spaces for principal bundles in large characteristic

dc.book.titleAdvances in Mathematics
dc.contributor.authorGómez Tomás, L.
dc.contributor.authorLanger, Adrián
dc.contributor.authorSchmitt, Alexander H.W.
dc.contributor.authorSols Lucía, Ignacio
dc.contributor.editorBiswas, Indranil
dc.contributor.editorKulkarni, Ravi S.
dc.contributor.editorMitra, Sudeb
dc.date.accessioned2023-06-20T10:34:01Z
dc.date.available2023-06-20T10:34:01Z
dc.date.issued2008
dc.description.abstractThis paper addresses the problem of constructing and compactifying moduli spaces of stable principal G -bundles over smooth projective schemes for an arbitrary reductive group G in both zero and nonzero characteristic. This involves refining the methods of the third author [Transform. Groups 9 (2004), no. 2, 167–209; Int. Math. Res. Not. 2004, no. 62, 3327–3366;] and creating a unified formulation of the results of these papers and a paper of the first and fourth authors [Ann. of Math. (2) 161 (2005), no. 2, 1037–1092;]. The paper also complements a previous article by all four authors [Adv. Math. 219 (2008), no. 4, 1177–1245]. Particular features of the paper are the inclusion of non-semisimple groups and non-faithful representations of G , a new approach to obtaining the semistable reduction theorem in characteristic zero and in large positive characteristic and a construction of the moduli space of decorated sheaves over projective varieties in arbitrary characteristic. The first main theorem states that, in characteristic zero and in large positive characteristic, coarse moduli spaces for (semi)stable singular principal G -bundles can be defined using faithful representations (under some conditions) and exist as projective schemes. This covers many known cases, for example when G is semisimple, for G=GL(V) , also for G one of the classical groups O r (k) , SO r (k) and Sp r (k) provided the characteristic is not 2 and for groups of adjoint type. In order to use a non-faithful representation ρ , singular principal G -bundles must be replaced by principal ρ -sheaves. The second main theorem states that the corresponding coarse moduli spaces exist as quasi-projective schemes provided the base scheme is a curve or the characteristic is zero. Both types of moduli space can be considered as compactifications of the moduli space of slope-stable rational principal G -bundles.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20702
dc.identifier.doi10.1016/j.aim.2008.05.015
dc.identifier.issn0001-8708, ESSN: 1090-2082
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0001870808001679
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50555
dc.journal.titleAdvances in Mathematics
dc.language.isoeng
dc.page.final1245
dc.page.initial1177
dc.publisherElsevier
dc.rights.accessRightsopen access
dc.subject.cdu512
dc.subject.keywordPrincipal bundle
dc.subject.keywordModuli space
dc.subject.keywordPositive characteristic
dc.subject.keywordSemistable reduction
dc.subject.keywordSemistability
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleModuli spaces for principal bundles in large characteristic
dc.typejournal article
dc.volume.number219
dspace.entity.typePublication
relation.isAuthorOfPublication6d35def4-3d5f-4978-800f-82b7edf76b5d
relation.isAuthorOfPublication.latestForDiscovery6d35def4-3d5f-4978-800f-82b7edf76b5d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0506511v4.pdf
Size:
569.34 KB
Format:
Adobe Portable Document Format

Collections