Reducción de la conjetura de Poincaré a otras conjeturas geométricas
dc.contributor.author | Montesinos Amilibia, José María | |
dc.date.accessioned | 2023-06-21T02:05:52Z | |
dc.date.available | 2023-06-21T02:05:52Z | |
dc.date.issued | 1972 | |
dc.description.abstract | Throughout his paper, the author uses "orientable manifold'' to mean a compact connected orientable 3-manifold without boundary. Such a manifold is known to be a ramified covering over a link of the 3-sphere, in which the ramification index of each singular point is ≤2. If the covering has n leaves, suppose that there are m points of index 2 and 2m points of index 1; such a covering is of type (m,n−2m). The author's main theorem states: Every orientable manifold is a ramified covering of type (1,n−2). He also uses the notion of a "link with a colouring of type (m,n−2m)''; these are intimately related to ramified coverings of type (m,n−2m). He conjectures that every link having a colouring of type (1,n−2) is "separable'', a term too complicated to define here. With this conjecture and his main theorem, he enunciates two further theorems and a second conjecture to show that his two conjectures, if true, would imply the Poincaré hypothesis for 3-manifolds. The author adds a note in proof to say that his first conjecture is false, as will be shown in a forthcoming paper by R. H. Fox. It therefore seems unnecessary to detail the conjectures in this review. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/21876 | |
dc.identifier.issn | 0373-0999 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64842 | |
dc.journal.title | Revista Matemática Hispanoamericana | |
dc.language.iso | spa | |
dc.page.final | 51 | |
dc.page.initial | 33 | |
dc.publisher | Real Sociedad Matemática Española; Consejo Superior de Investigaciones Científicas. Instituto "Jorge Juan" de Matemáticas | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.1 | |
dc.subject.keyword | Variedades orientables | |
dc.subject.keyword | Recubridores ramificados | |
dc.subject.keyword | Conjeturas geométricas | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | Reducción de la conjetura de Poincaré a otras conjeturas geométricas | |
dc.title.alternative | Reduction of the Poincaré conjecture to other geometric conjectures | |
dc.type | journal article | |
dc.volume.number | 32 | |
dcterms.references | [l] J. W. ALEXANDER: Note on Riemann spaces. «Bull. Amer. Math. Soc.», 26 (1920), 370-372. [2] W. CLIFFORD: On the canonical form and dissection of a Riemann's surface. «Proc. London Math. Soc.», 8 (1877), 292-304. [3] R. H. CROWELL & R. H. FOX: An introduction to Knot Theory. Gin & Company [4] R. H. FOX: Covering spaces with singularities. «Algebraic Geometry and Topology», A symposium in honour of S. Lefschetz. Princeton, 1957. [5] -- Construction of simply connected 3-manifolds. Topology of 3-manifolds and related topics, Englewood Cliffs N. J. (1962), Prentice Hall, 213-216. [6] -- A note on branched cyclic coverings of spheres (se publicará en «Revista Matemática Hispano-Americana»). [7] W. HAKEN: Some results on surfaces in 3-manifolds. «M. A. A. Studies in Mathematics», vol. 5. Studies in modern Topology, P. J. Hilton, editor, 39-98. [8] J. M. MONTESINOS: Sobre la conjetura de Poincaré y los recubridores ramificados sobre un nudo. Tesis Doctoral (será publicada en Departamento de Publicaciones de la Facultad de Ciencias de la Universidad de Madrid) (1971). [9] L. P. NEUWIRTH: Knots Groups. «Annal. of Math. Studies», núm. 56. [10] K. REIDEMEISTER: Knotentheorie, «Erg. d. Math.», 1, núm. 1, reimpreso Chelsea, N. 4. 1948. [ll] H. SEIFERT y THRELFALL: Lehrbuch der Topology. Leipzig und Berlin (1934). [12] F. WALDHAUSEN: Uber Involutionen de 3-Sphare. «Topology», 8 (1969), 81-91 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7097502e-a5b0-4b03-b547-bc67cda16ae2 | |
relation.isAuthorOfPublication.latestForDiscovery | 7097502e-a5b0-4b03-b547-bc67cda16ae2 |
Download
Original bundle
1 - 1 of 1