Applications of CRISPR/Cas technology and nanovehicles in the edition and detection ofpathogenic mutations
Loading...
Download
Official URL
Full text at PDC
Publication date
2024
Defense date
17/07/2023
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Complutense de Madrid
Citation
Abstract
La tecnología CRISPR/Cas ha revolucionado el campo de la edición génica. Las nucleasas CRISPR componen un conjunto de herramientas versátiles que ya han sido empleadas para generación de knock-in y knockout, edición de bases y modulación transcripcional. Además, algunas proteínas Cas, como Cas12a o Cas13, poseen una actividad trans adicional que puede utilizarse para detectar ácidos nucleicos. El sistema CRISPR/Cas resulta, por tanto, muy prometedor tanto para el tratamiento como para el diagnóstico de numerosas enfermedades. Este proyecto, centrado en las nucleasasCas12a y Cas9, pretende explorar ambos aspectos. Los trastornos genéticos son las principales dianas de las terapias basadas en CRISPR. Se trata de un grupo muy heterogéneo de enfermedades que provocan una elevada mortalidad y morbilidad a nivel mundial. La capacidad de las nucleasas Cas para cortar el ADN de manera específica allana el camino para la modificación selectiva de los cambios genéticos causantes de dichos trastornos. Esta modificación puede producirse a través de dos vías diferentes de reparación del ADN que se activan tras el corte: la unión de extremos no homólogos y la reparación dirigida por homología. La unión de extremos no homólogos es un mecanismo de reparación propenso a errores que puede aprovecharse para interrumpir la expresión de genes patógenos. La reparación dirigida por homología, por su parte, permite editar genes de manera precisa, lo que puede emplearse, por ejemplo, para corregir mutaciones patógenas. Sin embargo, se ve seriamente limitada por su baja eficiencia. En esta tesis, hemos explorado el potencial terapéutico de ambas vías de reparación, centrándonos especialmente en la entrega de ribonucleoproteínas CRISPR. Para ello, el primer paso ha sido implementar un protocolopara la expresión heteróloga y purificación de las proteínas Cas12a y Cas9, así como una serie de ensayos para validar su actividad nucleasa tanto ex cellullo como in cellullo...
CRISPR/Cas technology has revolutionised genome editing. CRISPR nucleases provide a versatile toolbox that has been used for knockout and knock-in generation, base-editing and transcriptional modulation. In addition, certain Cas proteins, such as Cas12a or Cas13, possess an additional trans nuclease activity that can be exploited for nucleicacid sensing. The CRISPR/Cas system holds therefore great promise for the treatment and diagnosis of numerous diseases. This project, focused on the DNA-targeting nucleases Cas12a and Cas9, aimed to explore both aspects.Genetic disorders are the main targets for CRISPR therapeutics. This is a very heterogeneous group of diseases that cause high mortality and morbidity worldwide. Specific DNA cleavage by Cas nucleases paves the way for targeted modification of thegenetic changes underlying such disorders. This modification can occur via two differentDNA repair pathways that become active upon CRISPR cleavage: non-homologous end joining, and homology directed repair. Non-homologous end joining is an error-pronerepair mechanism that can be harnessed to disrupt the expression of pathogenic genes. Homology-directed repair enables precise gene editing, which may be exploited, for instance, to correct pathogenic mutations. However, it is severely limited by its low efficiency. In this thesis, we have explored the therapeutic potential of both repair pathways with a particular focus on CRISPR ribonucleoprotein delivery. To this end, the first step has been to implement a protocol for the heterologous expression and purification of Cas12a and Cas9 proteins, as well as a series of assays to validate their nuclease activity both ex cellullo and in cellullo...
CRISPR/Cas technology has revolutionised genome editing. CRISPR nucleases provide a versatile toolbox that has been used for knockout and knock-in generation, base-editing and transcriptional modulation. In addition, certain Cas proteins, such as Cas12a or Cas13, possess an additional trans nuclease activity that can be exploited for nucleicacid sensing. The CRISPR/Cas system holds therefore great promise for the treatment and diagnosis of numerous diseases. This project, focused on the DNA-targeting nucleases Cas12a and Cas9, aimed to explore both aspects.Genetic disorders are the main targets for CRISPR therapeutics. This is a very heterogeneous group of diseases that cause high mortality and morbidity worldwide. Specific DNA cleavage by Cas nucleases paves the way for targeted modification of thegenetic changes underlying such disorders. This modification can occur via two differentDNA repair pathways that become active upon CRISPR cleavage: non-homologous end joining, and homology directed repair. Non-homologous end joining is an error-pronerepair mechanism that can be harnessed to disrupt the expression of pathogenic genes. Homology-directed repair enables precise gene editing, which may be exploited, for instance, to correct pathogenic mutations. However, it is severely limited by its low efficiency. In this thesis, we have explored the therapeutic potential of both repair pathways with a particular focus on CRISPR ribonucleoprotein delivery. To this end, the first step has been to implement a protocol for the heterologous expression and purification of Cas12a and Cas9 proteins, as well as a series of assays to validate their nuclease activity both ex cellullo and in cellullo...
Description
Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Químicas, leída el 17-07-2023