Yang-Mills theory for semidirect products G ⋉ g* and its instantons

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
Yang-Mills theory with a symmetry algebra that is the semidirect product defined by the coadjoint action of a Lie algebra on its dual is studied. The gauge group is the semidirect product , a noncompact group given by the coadjoint action on of the Lie group of . For simple, a method to construct the self-antiself dual instantons of the theory and their gauge nonequivalent deformations is presented. Every instanton has an embedded instanton with the same instanton charge, in terms of which the construction is realized. As an example, and instanton charge one is considered. The gauge group is in this case. Explicit expressions for the selfdual connection, the zero modes and the metric and complex structures of the moduli space are given.
© The Author(s) 2015. This work was partially funded by the Spanish Ministry of Education and Science through Grant FPA2011-24568.
Unesco subjects
1. A. Achúcarro, P.K. Townsend, A Chern–Simons action for threedimensional anti-de Sitter supergravity theories. Phys. Lett. B 180, 89 (1986) 2. E.Witten, (2+1)-Dimensional gravity as an exactly soluble system. Nucl. Phys. B 311, 46 (1988) 3. F.A. Bais, B.J. Schroers, Quantization of monopoles with nonabelian magnetic charge. Nucl. Phys. B 512, 250 (1998). arXiv:hep-th/9708004 4. G. Altarelli, F. Feruglio, Discrete flavor symmetries and models of neutrino mixing. Rev. Mod. Phys. 82, 2701 (2010). arXiv:1002.0211 [hep-ph] 5. S.F. King, A. Merle, S. Morisi, Y. Shimizu, M. Tanimoto, Neutrino mass and mixing: from theory to experiment. New J. Phys. 16, 045018 (2014). arXiv:1402.4271 [hep-ph] 6. C. Hattori, M. Matsunaga, T.Matsuoka, Semidirect product gauge group [SU(3)c × SU(2)L] × U(1)Y and quantization of hypercharge. Phys. Rev.D83, 015009 (2011). arXiv:1006.0563 [hep-ph] 7. T. Hashimoto, M. Matsunaga and K. Yamamoto, Quantization of hypercharge in gauge groups locally isomorphic but globally nonisomorphic to SU(3)cXSU(2)L XU(1)Y . arXiv:1302.0669 [hepph] 8. A. Medina, Ph Revoy, Algèbres de Lie et produit scalaire invariant. Ann. Sci. Éc. Norm. Sup. 18, 553 (1985) 9. J.M. Figueroa-O’Farrill, S. Stanciu, Nonsemisimple Sugawara constructions. Phys. Lett. B 327, 40 (1994). arXiv:hep-th/9402035 10. K. Sfetsos, Exact string backgrounds from WZW models based on nonsemisimple groups. Int. J. Mod. Phys. A 9, 4759 (1994). arXiv:hep-th/9311093 11. A.A. Tseytlin, On gauge theories for nonsemisimple groups. Nucl. Phys. B 450, 231 (1995). arXiv:hep-th/9505129 12. J.M. Figueroa-O’Farrill, S. Stanciu, Nonreductive WZW models and their CFTs. Nucl. Phys. B 458, 137 (1996). arXiv:hep-th/9506151 13. V.G. Drinfeld, in Proc. ICM. Quantum groups, Berkeley, 1986, p. 798 14. A.A. Belavin, A.M. Polyakov, A.S. Schwartz, Y.S. Tyupkin, Pseudoparticle solutions of the Yang–Mills equations. Phys. Lett. B 59, 85 (1975) 15. G. ’t Hooft, unpublished 16. R. Jackiw, C. Nohl, C. Rebbi, Conformal properties of pseudoparticle configurations. Phys. Rev. D 15, 1642 (1977) 17. E.Witten, Some exact multi-instanton solutions of classical Yang–Mills theory. Phys. Rev. Lett. 38, 121 (1977) 18. M.F. Atiyah, V.G. Drinfeld, N.J. Hitchin, Y.I. Manin, Construction of instantons. Phys. Lett. A 65, 185 (1978) 19. N.H. Christ, E.J. Weinberg, N.K. Stanton, General selfdual Yang–Mills solutions. Phys. Rev. D 18, 2013 (1978) 20. E. Corrigan, D.B. Fairlie, P. Goddard, S. Templeton, A Green’s function for the general selfdual gauge field. Nucl. Phys. B 140, 31 (1978) 21. A.S. Schwarz, On regular solutions of Euclidean Yang–Mills equations. Phys. Lett. B 67, 172 (1977) 22. R. Jackiw,C.Rebbi,Degrees of freedom in pseudoparticle systems. Phys. Lett. B 67, 189 (1977) 23. M.F. Atiyah, B.J. Hitchin, I.M. Singer, Deformations of instantons. Proc. Nat. Acad. Sci. 74, 2662 (1977) 24. L.S. Brown, R.D. Carlitz, C. Lee, Massless excitations in instanton fields. Phys. Rev. D 16, 417 (1977) 25. D. Tong, TASI lectures on solitons: Instantons,monopoles, vortices and kinks. arXiv:hep-th/0509216 26. E.J. Weinberg, Classical solutions in quantum field theory (Cambridge university Press, Cambridge, 2012) 27. G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev. D 14, 3432 (1976). (Erratum-ibid. D 18 (1978) 2199)