Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the Hilbert 17th problem for global analytic functions

dc.contributor.authorAcquistapace, Francesca
dc.contributor.authorBroglia, Fabrizio
dc.contributor.authorFernando Galván, José Francisco
dc.contributor.authorRuiz Sancho, Jesús María
dc.date.accessioned2023-06-20T10:34:57Z
dc.date.available2023-06-20T10:34:57Z
dc.date.issued2004-01-26
dc.description.abstractWe consider Hilbert’s 17 problem for global analytic functions in a modified form that involves infinite sums of squares. This reveals an essential connection between the solution of the problem and the computation of Pythagoras numbers of meromorphic functions
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipEuropean RAAG
dc.description.sponsorshipItalian GNSAGA of INdAM and MIUR
dc.description.sponsorshipSpanish GAAR
dc.description.statussubmitted
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21367
dc.identifier.officialurlhttp://www.maths.manchester.ac.uk/raag/index.php?preprint=0083
dc.identifier.relatedurlhttp://www.maths.manchester.ac.uk
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50644
dc.journal.titleReal algebraic and analytic geometry: preprint server
dc.language.isoeng
dc.page.final31
dc.page.initial1
dc.relation.projectIDHPRN-CT-2001-0027
dc.relation.projectIDBFM-2002-04797
dc.rights.accessRightsopen access
dc.subject.cdu512.7
dc.subject.keywordHilbert 17th Problem
dc.subject.keywordPythagoras number
dc.subject.keywordsum of squares
dc.subject.keywordbad set
dc.subject.keywordgerms at closed sets
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn the Hilbert 17th problem for global analytic functions
dc.typejournal article
dc.volume.number83
dcterms.referencesC. Andradas, L. Bröcker, J.M. Ruiz: Constructible Sets in Real Geometry, Ergeb. Math. Grenzgeb. 33. Berlin Heidelberg New York: Springer Verlag, 1996. J. Bochnak, M. Coste, M.F. Roy: Real Algebraic Geometry, Ergeb. Math. Grenzgeb. 36. Berlin Heidelberg New York: Springer-Verlag, 1998. J. Bochnak, W. Kucharz, M. Shiota: On equivalence of ideals of real global analytic functions and the 17th Hilbert problem, Invent. Math. 63, 403-421 (1981). H. Cartan: Variétés analytiques réelles et variétés analytiques complexes. Bull. Soc. Math. France 85, 77-99 (1957). S. Coen: Sul rango dei fasci coerenti, Boll. Un. Mat. Ital. 22 373-383 (1967). Ch.N. Delzell: A constructible continuous solution to Hilbert’s 17th problem, and other results in real Algebraic Geometry. Ph. D. Dissertation, Stanford 1980. R. Gunning, H. Rossi: Analytic functions of several complex variables. Englewood Cliff: Prentice Hall, 1965. P. Jaworski: Extension of orderings on fields of quotients of rings of real analytic functions. Math. Nachr. 125, 329-339 (1986). R. Narasimhan: Analysis on Real and Complex Manifolds, Advances Stuidies in Pure Mathematics, Masson & Cie, Editeur-Paris; Noth-Holland Publishing Company Amsterdam (1968). J.M. Ruiz: On Hilbert’s 17th problem and real Nullstellensatz for global analytic functions. Math. Z. 190, 447-459 (1985). H.H. Schaefer: Topological vector spaces. Graduate Texts in Mathematics 3, Springer-Verlag, New York-Berlin, 1971. H. Whitney, F. Bruhat: Quelques propiétés fondamentales des ensembles analytiques réels. Comment. Math. Helv. 33, 132-160 (1959).
dspace.entity.typePublication
relation.isAuthorOfPublication499732d5-c130-4ea6-8541-c4ec934da408
relation.isAuthorOfPublicationf12f8d97-65c7-46aa-ad47-2b7099b37aa4
relation.isAuthorOfPublication.latestForDiscovery499732d5-c130-4ea6-8541-c4ec934da408

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RuizSancho64.pdf
Size:
256.35 KB
Format:
Adobe Portable Document Format

Collections